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Chapter VI. Inner Product Spaces.

VI.1. Basic Definitions and Examples.

In Calculus you encountered Euclidean coordinate spaces Rn equipped with additional
structure: an inner product B : Rn × Rn → R.

Euclidean Inner Product: B(x,y) =
∑n

i=1 xiyi

which is often abbreviated to B(x, y) = (x, y). Associated with it we have the Euclidean
norm

∥x∥ =
n

∑

i=1

|xi|2 = (x,x)1/2

which represents the “length” of a vector, and a distance function

d(x,y) = ∥x− y∥

which gives the Euclidean distance from x to y. Note that y = x + (y − x).

Figure 6.1. The distance between points x, y in an inner product space is interpreted as
the norm (length) ∥y − x∥ of the difference vector ∆x = y − x.

This inner product on Rn has the following geometric interpretation

(x,y) = ∥x∥ · ∥x∥ · cos (θ(x,y))

where θ is the angle between x and y, measured in the plane M = R-span{x,y}, the 2-
dimensional subspace in Rn spanned by x and y. Orthogonality of two vectors is then
interpreted to mean (x,y) = 0; the zero vector is orthogonal to everybody, by definition.
These notions of length, distance, and orthogonality do not exist in unadorned vector
spaces.

We now generalize the notion of inner product to arbitrary vector spaces, even if they
are infinite-dimensional.

1.1. Definition. If V is a vector space over K = R or C, an inner product is a map
B : V ×V → K taking ordered pairs of vectors to scalars B(v1, v2) ∈ K with the following
properties

1. Separate Additivity in each Entry. B is additive in each input if the other
input is held fixed:

• B(v1 + v2, w) = B(v1, w) + B(v2, w)

• B(v, w1 + w2) = B(v, w1) + B(v, w2).
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Figure 6.2. Geometric interpretation of the inner product (x,y) = ∥x∥ ∥y∥·cos(θ(x, y))
in Rn. The projected length of a vector y onto the line L = Rx is ∥y∥·cos(θ). The angle
θ(x, y) is measured within the two-dimensional subspace M = R-span{x, y}. Vectors are
orthogonal when cos θ = 0, so (x,y) = 0. The zero vector is orthogonal to everybody.

for v, vi, w, wi in V .

|rm2. Positive Definite. For all v ∈ V ,

B(v, v) ≥ 0 and B(v, v) = 0 if and only if v = 0

3. Hermitian Symetric. For all v, w ∈ V ,

B(v, w) = B(w, v) when inputs are interchanged.

Conjugation does nothing for x ∈ R (x = x for x ∈ R), so an inner product on a
real vector space is simply symmetric, with B(w, v) = B(v, w).

1. Hermitian. For λ ∈ K, v, w ∈ V ,

4. B(λv, w) = λB(v, w) and,

• B(v, λw) = λ̄B(v, w).

An inner product on a real vector space is just a bilinear map – one that is R-linear in
each input when the other is held fixed – because conjugation does nothing in R.

The Euclidean inner product in Rn is a special case of the standard Euclidean inner
product in complex coordinate space V = Cn,

(z,w) =
n

∑

j=1

zjwj ,

which is easily seen to have properties (1.)–(4.) The corresponding Euclidean norm and
distance functions on Cn are then

∥z∥ = (z, z)1/2 = [
n

∑

j=1

|zj|2 ]
1/2

and d(z,w) = ∥z−w∥ = [
n

∑

j=1

|zj − wj |2 ]
1/2

Again, properties (1.) - (4.) are easily verified.
For an arbitrary inner product B we define the corresponding norm and distance

functions
∥v∥B = B(v, v)1/2 dB(v1, v2) = ∥v1 − v2∥B

which are no longer given by such formulas.

1.2. Example. Here are two important examples of inner product spaces.
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1. On V = Cn (For Rn) we can define “nonstandard” inner products by assigning
different positive weights αj > 0 to each coordinate direction, taking

Bα(z,w) =
n

∑

j=1

αj · zjwj with norm ∥z∥α = [
n

∑

j=1

αj · |zj|2 ]
1/2

This is easily seen to be an inner product. Thus the standard Euclidean inner
product on Rn or Cn, for which α1 = . . . = αn = 1, is part of a much larger family.

2. The space C[a, b] of continuous complex-valued functions f : [a, b]→ C becomes an
inner product space if we define

(f, h)2 =

∫ b

a
f(t)h(t) dt (Riemann integral)

The corresponding “L2-norm” of a function is then

∥f∥2 = [
∫ b

a
|f(t)|2 dt ]

1/2
;

the inner product axioms follow from simple properties of the Riemann integral.
This infinite-dimensional inner product space arises in many applications, particu-
larly Fourier analysis. !

1.3. Exercise. Verify that both inner products in the last example actually satisfy
the inner product axioms. In particular, explain why the L2-inner product (f, h)2 has
∥f∥2 > 0 when f is not the zero function (f(t) ≡ 0 for all t).

We now take up the basic properties common to all inner product spaces.

1.4. Theorem. On any inner product space V the associated norm has the following
properties

(a) ∥x∥ ≥ 0;

(b) ∥λx∥ = |λ| · ∥x∥ (and in particular, ∥ − x∥ = ∥x∥ );

(c) (Triangle Inequality) For x, y ∈ V , ∥x ± y∥ ≤ ∥x∥+ ∥y∥.

Proof: The first two are obvious. The third is important because it implies that the
distance function dB(x, y) = ∥x− y∥ satisfies the “geometric triangle inequality”

dB(x, y) ≤ dB(x, z) + dB(z, y), for all x, y, z ∈ V

as indicated in Figure 6.3. This follows directlly from (3.) because

dB(x, y) = ∥x− y∥ = ∥(x− z) + (z − y)∥ ≤ ∥x− z∥+ ∥z − y∥ = dB(x, z) + dB(z, y)

The version of (3.) involving a (−) sign follows from that featuring a (+) because
v − w = v + (−w) and ∥ − w∥ = ∥w∥.

The proof of (3.) is based on an equally important inequality:

1.5. Lemma (Schwartz Inequality). If B is an inner product on a real or complex
vector space then

|B(x, y)| ≤ ∥x∥B · ∥y∥B
for all x, y ∈ V .
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Figure 6.3. The meaning of the Triangle Inequality: direct distance from x to y is always
≤ the sum of distances d(x, z) + d(z, y) to any third vector z ∈ V .

Proof: For all real t we have φ(t) = ∥x + ty∥2B ≥ 0. By the axioms governing B we can
rewrite φ(t) as

φ(t) = B(x + ty, x + ty)

= B(x, x) + B(ty, x) + B(x, ty) + B(ty, ty)

= ∥x∥2B + t B(x, y) + t B(x, y) + t2∥y∥2B
= ∥x∥2B + 2t Re(B(x, y)) + t2∥y∥2B

because B(tx, y) = tB(x, y) and B(x, ty) = tB(x, y) (since t ∈ R), and z + z = 2 Re(z) =
2x for z = x + iy in C. Now φ : R → R is a quadratic function whose minimum value
occurs at t0 where

dφ

dt
(t0) = 2t0∥y∥2B + Re(B(x, y)) = 0

or

t0 =
−Re(B(x, y))

2∥y∥2B
Inserting this into φ we find the actual minimum value of φ:

0 ≤ min{φ(t) : t ∈ R} =
∥x∥2B · ∥y∥2B − 2|Re(B(x, y))|2 + |Re(B(x, y))|2

∥y∥2B

Thus
0 ≤ ∥x∥2B · ∥y∥2B − |Re(B(x, y))|2

which in turn implies

|ReB(x, y)| ≤ ∥x∥B · ∥y∥B for all x, y ∈ V.

If we replace x )→ eiθx this does not change ∥x∥ since |eiθ| = | cos(θ) + i sin(θ)| = 1 for
real θ; in the inner product on the left we have B(eiθx, y) = eiθB(x, y). We may now
take θ ∈ R so that eiθ · B(x, y) = |B(x, y)|. For this particular choice of θ we get

0 ≤ |Re(B(eiθx, y))| = |Re(eiθB(x, y))|
= Re(|B(x, y)|) = |B(x, y)| ≤ ∥x∥B · ∥y∥B .

That proves the Schwartz inequality. !

Proof (Triangle Inequality): The algebra is easier if we prove the (equivalent) in-
equality obtained when we square both sides:

0 ≤ ∥x + y∥2 ≤ (∥x∥+ ∥y∥)
2

= ∥x∥2 + 2∥x∥·∥y∥+ ∥y∥2
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In proving the Schwartz inequality we saw that

∥x + y∥2 = (x + y , x + y) = ∥x∥2 + 2 Re(x, y) + ∥y∥2

so our proof is finished if we can show 2 Re(x, y) ≤ 2∥x∥·∥y∥. But

Re(z) ≤ |Re(z)| ≤ |z| for all z ∈ C

and then the Schwartz inequality yields

Re(B(x, y)) ≤ |B(x, y)| ≤ ∥x∥B ·∥y∥B

as desired. !

1.6. Example. On V = M(n, K) we define the Hilbert-Schmidt inner product and
norm for matrices:

(44) (A, B)
HS

= Tr(B∗A) and ∥A∥2
HS

=
∑

i,j=1

|aij |2 = Tr(A∗A)

It is easily verified that this is an inner product. First note that the trace map from
M(n, K)→ K

Tr(A) =
n

∑

i=1

aii

is a complex linear map and Tr(A ) = Tr(A); then observe that

∥A∥22 = (A, A)
HS

=
n

∑

i,j=1

|aij |2 is > 0 unless A is the zero matrix.

Alternatively, consider what happens when we identify M(n, C) ∼= Cn2

as complex vector

spaces. The Hilbert-Schmidt norm becomes the usual Euclidean norm on Cn2

, and
likewise for the inner products; obviously (A, B)

HS
is then an inner product on matrix

space.
The norm ∥A∥

HS
and the sup-norm ∥A∥∞ discussed in Chapter V are different ways

to measure the “size” of a matrix; the HS-norm turns out to be particularly well adapted
to applications in statistics, starting with “least-squares regression” and moving on into
“analysis of variance.” Each of these norms determines a notion of matrix convergence
An → A as n→∞ in M(N, C).

∥ · ∥2-Convergence: ∥An −A∥
HS

= [
∑

i,j

|a(n)
ij − aij |2 ]

1/2
→ 0 as n→∞

∥ · ∥∞-Convergence: ∥An −A∥∞ = max
i,j

{ |a(n)
ij − aij | } → 0 as n→∞

However, despite their differences both norms determine the same notion of matrix con-
vergence.

An → A in ∥ · ∥2-norm ⇔ An → A in ∥ · ∥∞-norm

The reason is explained in the next exercise. !

1.7. Exercise. Show that there exist bounds M2, M∞ > 0 such that the ∥ ·∥2 and ∥ ·∥∞
norms mutually dominate each other

∥x∥2 ≤M∞ ∥x∥∞ and ∥x∥∞ ≤M2 ∥x∥2
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for all x ∈ Cn. Explain why this leads to the conclusion that An → A in ∥ · ∥2-norm if
and only if An → A in ∥ · ∥∞-norm.
Hint: The Schwartz inequality might be helpful in one direction.

The polarization identities below show that inner products over R or C can be
reconstructed if we only know the norms of vectors in V . Over C we have

(45) B(x, y) =
1

4

3
∑

k=0

1

ik
B(x + iky , x + iky) =

1

4

3
∑

k=0

1

ik
∥x + iky∥2, where i =

√
−1

Over R we only need 2 terms:

B(x, y) =
1

4
(B(x + y , x + y) + (−1)B(x− y , x− y) )

1.8. Exercise. Expand

(x + iky , x + iky) = ∥x + iky∥2

to verify the polarization identities.

Orthonormal Bases in Inner Product Spaces. A set X = {ei : i ∈ I} of
vectors is orthogonal if (ei, ej) = 0 for i ̸= j; it is orthonormal if

(ei, ej) = δij (Kronecker delta) for all i, j ∈ I .

An orthonormal set can be infinite (in infinite dimensional inner product spaces), and all
vectors in it are nonzero; an orthogonal family could have vi = 0 for some indices since
(v, 0) = 0 for any v. The set X is an orthonormal basis (ON basis) if it is orthonormal
and V is spanned by {X}.

1.9. Proposition. Orthonormal sets have the following properties.

1. Orthonormal sets are independent;

2. If X = {ei : i ∈ I} is a finite orthonormal set and v is in M = K-span{X} then by
(1.) X is a basis for M and the expansion of any v in M with respect to this basis
is just

v =
∑

i∈I

(v, ei) ei

(Finiteness of X required for
∑

i∈I(. . .) to make sense; otherwise the right side is
an infinite series).

In particular if X = {e1, ..., en} is an orthonormal basis for a finite-dimansional inner
product space V , the coefficients in the expansion

v =
n

∑

i=1

(v, ei) ei, for every v ∈ V

are easily computed by taking inner products.

Proof: For (1.), if a finite sum
∑

i ciei equals 0 we have

0 = (v, ek) =
∑

i

ci(ei, ek) =
∑

i

ciδik = ck
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for each k, so the ei are independent. Part (2.) is an immediate consequence of (1.): we
know {ei} is a basis, and if v =

∑

i ciei is its expansion the inner product with a typical
basis vector is

(v, ek) =
∑

i

ci(ei, ek) =
∑

i

ciδik = ck . !

1.10. Corollary. If vectors {v1, ..., vn} are nonzero, orthogonal, and a vector basis in V ,
then the renormalized vectors

ei =
vi

∥vi∥
for 1 ≤ i ≤ n

are an orthonormal basis. !

Entries in the matrix [T ]YX of a linear operator are easily computed by taking inner
products if the bases are orthonormal (but not for arbitrary bases).

1.11. Exercise. Let T : V → W be a linear operator between finite-dimensional inner
product spaces and let X = {ei}, Y = {fi} be orthonormal bases. Prove that the entries
in [T ]YX are given by

Tij = (T (ej), fi)W = (fi, T (ej))W

for 1 ≤ i ≤ dim(W ), 1 ≤ j ≤ dim(V ).

The fundamental fact about ON bases is that the coefficients in v =
∑n

k=1 (v, ei) ei

determine the norm ∥v∥ via a generalization of Pythagoras’ Formula for Rn,

Pythagoras: If x =
n

∑

i=1

xiei then ∥x∥2 =
n

∑

i=1

|xi|2

We start by proving a fundamental inequality.

1.12. Theorem (Bessel’s Inequality). Let X = {e1, . . . , em} be any finite orthonor-
mal set in an inner product space V (possibly infinite-dimensional). Then

(46)
n

∑

i=1

|(v, ei)|2 ≤ ∥v∥2 for all v ∈ V

Furthermore, if v′ = v −
∑n

i=1(v, ei) ei, this vector is orthogonal to each ej and hence is
orthogonal to all the vectors in the linear span M = K-span{X}.
Note: The inequality (46) becomes an equality if X is an orthonormal basis for V because
then v′ = 0.

Proof: Since inner products are conjugate bilinear, we have

0 ≤ ∥v′∥2 = (v′, v′) = (v −
m

∑

i=1

(v, ei) ei , v −
m

∑

j=1

(v, ej) ej )

= (v, v)− (
∑

i

(v, ei) ei , v)− (v ,
∑

j

(v, ej) ej) + (
∑

i

(v, ei) ei ,
∑

j

(v, ej) ej )

= ∥v∥2 −
∑

i

(v, ei)·(ei, v)−
∑

j

(v, ej)·(v, ej) +
∑

i,j

(v, ei)·(v, ej)·(ei, ej)

= ∥v∥2 −
∑

i

|(v, ei)|2 −
∑

j

|(v, ej)|2 +
∑

i

|(v, ei)|2 (since (ek, v) = (v, ek) )

= ∥v∥2 −
∑

i

|(v, ei)|2
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Therefore
∑

i=1

|(v, ei)|2 ≤ ∥v∥2

as required.
The second statement now follows easily because

(v′, ek) = (v −
∑

j

(v, ej) ej , ek) = (v, ek)−
∑

j

(v, ej)·(ej, ek)

= (v, ek)− (v, ek) = 0 for all k

Furthermore, if w =
∑m

k=1 ckek is any vector in M we also have

(v′, w) =
∑

k

ck(v′, ek) = 0 ,

so v′ is orthogonal to M as claimed. !

1.13. Corollary (Pythagoras). If X is an orthonormal basis in a finite dimensional
inner product space, then

∥v∥2 =
m

∑

i=1

|(v, ei)|2

(sum of squares of the coefficients in the basis expansion v =
∑

i(v, ei) ei).

1.14. Theorem. Orthonormal bases exist in any finite dimensional inner product space.

Proof: We argue by induction on n = dim(V ); the result is trivial if n = 1 (any vector
of length 1 is an orthonormal basis). If dim(V ) = n + 1, let v0 be any nonzero vector.
The linear functional ℓ0 : v → (v, v0) is nonzero, and as in Example 1.3 of Chapter III
its kernel

M = {v : (v, v0) = 0} = (Kv0)
⊥

is a hyperplane of dimension dim(V ) − 1 = n. By the induction hypothesis there is an
ON basis X0 = {e1, , . . . , en} in M , and every vector in M is orthogonal to v0. If we
rescale v0 and adjoin en+1 = v0/∥v0∥ to X0 the enlarged set X = {e1, . . . , en, en+1} is
obviously orthonormal; it is also a basis for V . [ By Lemma 4.4 of Chapter III, X is a
basis for W = K-span{X} ⊆ V , and since dim(W ) = |X| = n + 1 = dim(V ) we must
have W = V .] !

VI.2. Orthogonal Complements and Projections.
If M is a subspace of a (possibly infinite-dimensional) inner product space V , its or-
thogonal complement M⊥ is the set of vectors orthogonal to every vector in M ,

M⊥ = { v ∈ V : (v, m) = 0, for all m ∈M } = { v : (v, M) = {0} } .

Obviously {0}⊥ = V and V ⊥ = {0} from the Axioms for inner product.

2.1. Exercise. Show that M⊥ is again a subspace of V , and that

M1 ⊆M2 ⇒ M⊥
2 ⊆M⊥

1 .

2.2. Proposition. If M is a finite dimensional subspace of a (possibly infinite-
dimensional) inner product space V , then

1. M ∩M⊥ = {0} and M + M⊥ = V , so we have a direct sum decomposition V =
M ⊕M⊥.
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2. If dim(V ) < ∞ we also have (M⊥)⊥ = M ; if |V | = ∞ we can only say that
M ⊆ (M⊥)⊥.

Proof: If v ∈ M ∩M⊥ then ∥v∥2 = (v, v) = 0 so v = 0 and M ∩M⊥ = {0}. Now let
{e1, ..., en} be an orthonormal basis for M . If v ∈ V write

v = (v −
m

∑

i=0

(v, ei) ei) +
m

∑

i=1

(v, ei) ei = v⊥ + v∥

in which v⊥ is orthogonal to M and v∥ is the component of v “parallel to” the subspace
M (because it lies in M). Then for all v ∈ V we have

(v, v⊥) = (v⊥ + v∥ , v⊥) = (v⊥, v⊥) + (v∥, v⊥) = ∥v⊥∥2 + 0 = ∥v⊥∥2

If v ∈ (M⊥)⊥, so (v, v⊥) = 0, we conclude that ∥v⊥∥ = 0 and hence v = v⊥ + v∥ = 0+ v∥
is in M . That proves the reverse inclusion M⊥⊥ ⊆M . !

The situation is illustrated in Figure 6.4.

Figure 6.4. Given an ON basis {ei, . . . , em} in a finite dimensional subspace M ⊆ V , the
vector v∥ =

Pm
k=1(v, ek) ek is in M and v⊥ = v − v∥ is orthogonal to M . These are the

components of v ∈ V “parallel toM” and “perpendicular to M ,” with v = v⊥ + v∥.

Orthogonal Projections on Inner Product Spaces. If an inner product
space is a direct sum V = V1 ⊕ . . . ⊕ Vr we call this an orthogonal direct sum if the
subspaces are mutually orthogonal.

(Vi, Vj) = 0 if i ̸= j

We indicate this by writing V = V1⊕̇ . . . ⊕̇Vr = ˙⊕r

i=1Vi. The decomposition V =
M⊕̇M⊥ of Proposition 2.2 was an orthogonal decomposition.

In equation Exercise 3.5 of Chapter II we defined the linear projection operators
Pi : V → V associated with an ordinary direct sum decomposition V = V1⊕ . . . ⊕Vr, and
showed that such operators are precisely the linear operators that have the idempotent
property P 2 = P . In fact there is a bijective correspondence

(idempotent linear operators) ←→ (direct sum decompositions V = R⊕K) ,

described in Proposition 3.7 of Chapter II, and reprised below.

Theorem. If a linear operator P : V → V is idempotent operator, so P 2 =
P , there is a direct sum decomposition V = R ⊕ P such that P projects V
onto R along K. In particular,

R = R(P ) = range(P ) and K = K(P ) = ker(P )
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Furthermore Q = I − P is also idempotent and

R(Q) = K(P ) and K(Q) = R(P )

When V is an inner product space we will see that the projections associated with an
orthogonal direct sum V = E⊕̇F have special properties. They are also easy to compute
using the inner product. (Compare what follows with the calculations in Example 3.6
of Chapter II, of projections associated with an ordinary direct sum decomposition V =
E ⊕ F in a space without inner product.)

Projections associated with an orthogonal direct sum decomposition V = V1⊕̇ . . . ⊕̇Vr

are called orthogonal projections.

2.3. Lemma. If V = E⊕̇F is an orthogonal direct sum decomposition of a finite
dimensional inner product space, then

E⊥ = F and F⊥ = E E⊥⊥ = E and F⊥⊥ = F

Proof: The argument for F is the same as that for E. We proved that E⊥⊥ = E in
Proposition 2.2 and we know that E ⊆ F⊥ by definition; based on this we will prove the
reverse inequality E ⊇ F⊥.

Since |V | <∞ we have V = F ⊕ F⊥, so that |V | = |F | + |F⊥|; since V = E ⊕ F we
also have |V | = |F | + |E|. Therefore |E| = |F⊥|. But E ⊆ F⊥ in an orthogonal direct
sum E⊕̇F , so we conclude that E = F⊥. !

2.4. Exercise. Let V = V1⊕̇ . . . ⊕̇Vr be an orthogonal direct sum decomposition of an
inner product space (not necessarily finite dimensional).

(a) If Wi is the linear span
∑

j ̸=i Vj , prove that Wi ⊥ Vi for each i, and V = Vi⊕̇Wi.

(b) If v = v1 + . . . + vr is the unique decomposition into pairwise orthogonal vectors
vi ∈ Vi, prove that ∥v∥2 =

∑

i ∥vi∥2.

The identity (2.) is yet another version of Pythagoras’ formula.

2.5. Exercise. In a finite dimensional inner prodcut space, prove that the Parseval
formula

(v, w) =
n

∑

i=1

(v, ei)·(ei, w)

holds for every orthonormal basis {e1, . . . , en}.

The Gram-Schmidt Construction. We now show how any independent set of
vectors {v1, . . . , vn} in an inner product space can be modified to obtain an orthonormal
set of vectors {e1, . . . , en} with the same linear span. This Gram-Schmidt construc-
tion is recursive, and at each step we have

1. ek ∈ K-span{v1, ..., vk}

2. Mk = K-span{e1, ..., ek} is equal to K-span{v1, .., vk} for each 1 ≤ k ≤ n.

The result is an orthonormal basis {e1, ..., en} for M = K-span{v1, .., vn} (and for all
of V if the {vi} span V ). The construction procedes inductively by constructing two
sequences of vectors {ui} and {ei}.
Step 1: Take

u1 = v1 and e1 =
v1

∥v1∥

Conditions (1.) and (2.) obviously hold and K·v1 = K · u1 = K·e1.
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Step 2: Define
u2 = v2 − (v2|e1)·e1 and e2 =

u2

∥u2∥
.

Obviously u2 ∈ K-span{v1, v2} and u2 ̸= 0 because v2 /∈ Kv1 = Ke1 = M1; thus e2 is
well defined. Furthermore

1. u2 ⊥M1 because

(u2, e1) = (v2 − (v2, e1)e1 , e1) = (v2, e1)− (v2, e1)·(e1, e1) = 0 ⇒ e2 ⊥M1

hence {e1, e2} is an orthonormal set of vectors;

2. M2 = K-span{e1, e2} = Ku2 + Ke1 = Kv2 + Ke1 = Kv2 + Kv1 = K-span{v1, v2}.

If n = 2 we’re done; otherwise continue with

Step 3: Define

u3 = v3 −
2

∑

i=1

(v3, ei)·ei = v3 −
2

∑

i=1

(v3, ui)

∥ui∥2
ui

Then u3 ̸= 0 because the sum is in K-span{v1, v2} and the vi are independent; thus
e3 = u3

∥u3∥ is well defined. We have u3 ⊥M2 because

(u3, e1) = (v3 −
2

∑

i=1

(v3, ei)ei , e1 )

= (v3, e1)−
2

∑

i=1

(v3, ei)·(ei, e1)

= (v3, e1)− (v3, e1) = 0 ,

and similarly (u3, e2) = 0, hence e3 ⊥M2 = K-span{e1, e2}. Finally,

K-span{e1, e2, e3} = Ku3 + K-{e1, e2} = Kv3 + K-{e1, e2}
= Kv3 + K-{v1, v2} = K-{v1, v2, v3}

At the kth step we have produced orthonormal vectors {e1, ..., ek} with K-span{e1, ..., ek} =
K-span{v1, ..., vk} = Mk. Now for the induction step:

Step k + 1: Define

uk+1 = vk+1 −
k

∑

i=1

(vk+1, ei) ei = vk+1 −
k

∑

i=1

(vk+1, ui)

∥ui∥2
ui

and
ek+1 =

uk+1

∥uk+1∥
.

Again uk+1 ̸= 0 because vk+1 /∈Mk = K-span{v1, ..., vk} = K-span{e1, ..., ek}, so ek+1 is
well defined. Furthermore uk+1 ⊥Mk because

(uk+1, ej) = (vk+1 −
k

∑

i=1

(vk+1, ei) ei , ej)

= (vk+1, ej)−
k

∑

i=1

(vk+1, ei)·(ei, ej)

= (vk+1, ej)− (vk+1, ej) = 0
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hence also ek+1 ⊥Mk. Then

K-{e1, ..., ek+1} = Kuk+1 + K-{e1, ...., ek} = Kvk+1 + K-{e1, ...., ek}
= K-{v1, ..., vk+1} .

By induction, {e1, ..., en} has the properties claimed. !

Note that the outcome of Step(k+1) depends only on the {e1, ..., ek} and the new vector
vk+1; the original vectors {v1, ..., vk} play no further role in the inductive process.

2.6. Example. The standard inner product in C[−1, 1] is the L2 inner product

(f, h)2 =

∫ 1

−1
f(t)h(t) dt

for functions f : [−1, 1] → C. Regarding v1 = 1-, v2 = x, v3 = x2 as functions from
[−1, 1] → C, these vectors are independent. Find the orthonormal set {e1, e2, e3} pro-
duced by the Gram-Schmidt process.

Solution: We have u1 = v1 = 1- and since ∥u1∥2 =
∫ 1
−1 1- dx = 2, we get e1 = 1√

2
· 1-. At

the next step

u2 = v2 − (v2, e1) e1 = v2 −
(v2, u1)

∥u1∥2
u1 = x−

∫ 1
−1 x · 1- dx

∥u1∥2
· 1- = x− 0 = x

and

∥u2∥2 =

∫ 1

−1
x2 dx = 2

∫ 1

0
x2 dx = 2

[

1

3
x3|1

0

]

=
2

3

The second basis vector is

e2 =
u2

∥u2∥
=

√

3

2
· x

At the next step:

u3 = v3 − ((v3|e1)e1 + (v3, e2)e2)

= v3 − ( (v3, u2)

∥u2∥2
· u2 +

(v3, u1)

∥u1∥2
· u1 )

= x2 −
∫ 1
−1 x2 ·xdx

2
3

· x −
∫ 1
−1 x2 ·1- dx

2
· 1-

= x2 − 0−
1

3
1- = x2 −

1

3

Then

∥u3∥2 =

∫ 1

−1
|u3(x)|2 dx =

∫ 1

−1
(x2 −

1

3
)
2
dx

=

∫ 1

−1
(x4 −

2

3
x2 +

1

9
)dx

= 2 ·
[

x5

5
−

2

9
x3 +

1

9
x |1

0

]

=
8

45

and the third orthonormal basis vector is

e3 =
u3

∥u3∥
=

√

45

8
(x2 −

1

3
) =

√

5

8
(3x2 − 1) !
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If we extend the original list to include v4 = x4 we may compute e4 knowing only e1, e2, e3

(or u1, u2, u3) and v4; there is no need to repeat the previous calculations!

2.7. Exercise. Find u4 and e4 in the above situation.

This process can be continued indefinitely to produce the orthonormal family of Leg-
endre polynomials e1(t), e2(t), . . . , en(t) . . . in the space of polynomials C[x] restricted
to the interval [−1, 1]. (This is also true for R[x] restricted to [−1, 1] since the Legen-
dre polynomials all have real coefficients.) Clearly the (n + 1)-dimensional subspace Mn

obtained by restricting the space of polynomials of degree ≤ n

Pn = K-span{e1, ..., en+1} = K-span{1-, x, . . . , xn}

to the interval (so Mn = Pn|[−1, 1] ) has {e1, . . . , en+1} as an ON basis with respect to
the usual inner product on C[−1, 1]

(f, h)2 =

∫ 1

−1
f(t)h(t) dt .

Restricting the full set of Legendre polynomials e1(t), . . . , en+1(t), . . . to [−1, 1] yields
an orthonormal set of vectors in the infinite-dimensional inner product space C[−1, 1].
The orthogonal projection Pn : C[−1, 1]→Mn ⊆ C[−1, 1] associated with the orthogonal
direct sum decomposition V = Mn ⊕ (Mn)⊥ (in which dim(Mn)⊥ = ∞) is given by the
explicit formula

Pnf(t) =
n+1
∑

k=1

(f, ek) ek(t) (−1 ≤ t ≤ 1)

=
n+1
∑

k=1

(
∫ 1

−1
f(x)ek(x) dx) · ek(t)

=
n

∑

k=0

ck tk (ck ∈ C)

for any continuous function on [−1, 1]. The projected image Pnf(t) is a polynomial of
degree ≤ n even though f(t) is continuous and need not be differentiable.

A standard result from analysis shows that the partial sums of the infinite series
∑∞

k=0 ck tk converge in the L2-norm to the original function f(t) throughout the interval
−1 ≤ t ≤ 1,

∥f − Pnf∥2 =

[
∫ 1

−1
|f(t)− Pnf(t)|2 dt

]1/2

→ 0 as n→∞

for all f ∈ C[−1, 1].
It must be noted that this series expansion of f(t) ∼

∑∞
k=0 ck tk is not at all the

same thing as a Taylor series expansion about t = 0, which in any case would not make
sense because f(t) is only assumed continuous (the derivatives used to compute Taylor
coefficients might not exist!) In fact, convergence of this series in the L2-norm is much
more robust than convergence of Taylor series, which is why it is so useful in applications.

Fourier Series Expansions. The complex trig polynomials En(t) = e2πint (n ∈ Z)
are periodic complex-valued functions on R ; each has period ∆t = 1 since

e2πin(t+1) = e2πint · e2πin = e2πint for all t ∈ R and n ∈ Z.
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If en(t) is the restriction of En(t) to the “period-interval” I = [0, 1] we get an ON family of

vectors with respect to the usual inner product (f, h) =
∫ 1
0 f(t)h(t) dt on C[0, 1], because

∥en∥2 =

∫ 1

0
|en(t)|2 dt =

∫ 1

0
1- dt = 1

(em, en) =

∫ 1

0
em(t)en(t) dt =

∫ 1

0
e2πi(m−n)tdt

=

[

e2πi(m−n)t

2πi(m− n)
|1
0

]

= 0 if m ̸= n.

Thus {en : n ∈ Z} is an orthonormal family in C[0, 1].
For N ≥ 0 let MN = K-span{ek : −N ≤ k ≤ N}. For f in this subspace we have the

basis expansion:

f =
N

∑

k=−N

(f, ek) ek =
N

∑

k=−N

cke2πikt

where ck is the kth Fourier coefficient

(47) ck = (f, ek) =

∫ 1

0
f(t)e−2πiktdt.

By Bessel’s inequality:

∥f∥22 =

∫ 1

0
|f(t)|2dt ≥

N
∑

k=−N

|ck|2 =
N

∑

k=−N

|(f, ek)|2

and this is true for N = 1, 2, .... The projection PN of C[0, 1] onto MN along M⊥
N is then

given by

PNf(t) =
N

∑

k=−N

ckek(t) =
N

∑

k=−N

(f, ek) e2πikt, N = 0, 1, 2, ...

because PN (f) ∈MN by definition, and (f − PNf, ek) = 0 for −N ≤ k ≤ N .
The Fourier series of a continuous (or bounded Riemann integrable) complex-valued

function f : [0, 1]→ C is the infinite series

(48) f ∼
∑

k∈Z

(f, ek)·e2πikt

whose coefficients ck = (f, en) are the Fourier coefficients defined in (47).
It is not immediately clear when this series converges, but when convergence is suit-

ably interpreted it can be proved that the series does converge, and to the initial function
f(t). This expansion has proved to be extremely useful in applications. Its significance
is best described as follows.

If t is regarded as a time variable, and F (t) is some sort of periodic “signal” or
“waveform” such that F (t + 1) = F (t) for all t, then F is completely determined by
its restriction f = F | [0, 1] to the basic period interval 0 ≤ t ≤ 1. The Fourier series
expansion of f on this interval can in turn be regarded as a representation of the original
waveform as a “superposition,” with suitable weights, of the basic periodic waveforms
En(t) = e2πint (t ∈ R).

F (t) ∼
+∞
∑

n=−∞
cn ·En(t) for all t ∈ R
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For instance, this implies that any periodic sound wave F (t) with period ∆t = 1 can
be reconstructed by superposing scalar multiples of the “pure tones” En(t), which have
frequencies ωn = n cycles per second. This is precisely how sound synthesizers work.
It is remarkable, that the correct “weight” assigned to each pure tone is the Fourier
coefficient cn = (f, en); even more remarkable is the fact that complex-valued weights
ck ∈ C must be allowed, even if the signal is real-valued, because the functions En(t) =
cos(2πnt) + i sin(2πnt) are complex-valued.

If f is piecewise differentiable the infinite series (48) converges (except at points of
discontinuity) to the original periodic function f(t). Furthermore the following results
can be proved for any continuous (or Riemann integrable) function on [0, 1].

Theorem. If f(t) is bounded and Riemann integrable for 0 ≤ t ≤ 1, then

1. L2-Norm Convergence: The partial sums of the Fourier series (48)
converge to f(t) in the L2-norm.

∥f −
N

∑

k=−N

(f, ek) ek∥2 → 0 as N →∞

2. Extended Bessel: ∥f∥2 =
∫ 1
0 |f(t)|2 dt is equal to

∑

k∈Z
|(f, ek)|2 .

The norm ∥f − h∥2 = [
∫

|f − h|2 dt ]
1/2

is often referred to as the “RMS = Root Mean
Square” distance between f and h.

Figure 6.5. Various waveforms with period ∆t = 1, whose Fourier transforms can be
computed by Calculus methods.

2.8. Example. Let

f(t) =

{

t for 0 ≤ t < 1
0 for t = 1

This is the restriction to [0, 1] of the periodic “sawtooth” waveform in Figure 6.5(a).
Find its Fourier series.

120



Solution: If k ̸= 0 integration by parts yields

ck =

∫ 1

0
te−2πikt dt

=

[

−1

2πik
e−2πikt · t |1

0

]

−
∫ 1

0

−1

2iπik
e−2πikt dt

=
−1

2πik
+

1

2πik
(ek, e0) (where e0(t) ≡ 1 for all t)

=
−1

2πik
if k ̸= 0 .

For k = 0 we get a different result:

c0 =

∫ 1

0
t dt = 1

2

By Bessel’s Inequality we have

∥f∥22 =

∫ 1

0
|f(t)|2 dt =

∫ 1

0
t2 dt = 1

3 (by direct calculation)

≥
N

∑

k=−N

|(f, ek)|2 =
N

∑

k=−N

|ck|2

=
1

4
+

∑

k ̸=0,−N≤k≤N

1

4π2k2

for any N = 1, 2, ... If we multiply both sides by 4π2, then for all N we get

4

3
π2 ≥

∑

0<|k|≤N

1

k2
+ π2

1

3
π2 ≥ 2 ·

N
∑

k=1

1

k2

π2

6
≥

N
∑

k=1

1

k2
for all N = 1, 2, . . . ⇒

π2

6
≥

∞
∑

k=1

1

k2

(the infinite series converges by the Integral Test). Once we know that ∥f∥2 =
∑

k∈Z
|ck|2

we get the famed formula
∞
∑

k=1

1

k2
=

π2

6

The Fourier series associated with the sawtooth function f(t) is

f(t) ∼
∞
∑

k=−∞

(f, ek) ek(t) =
1

2
· 1- +

∑

k ̸=0

−1

2πik
e2πikt ,

which converges pointwise for all t ∈ R except the “jump points” t ∈ Z, where the series
converges to the middle value 1

2 . !

2.9. Exercise. Compute the Fourier transforms of the periodic functions whose graphs
are shown in Figure 6.5 (b) – (d).

A Geometry Problem. The following result provides further insight into the
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meaning of the projection PN (v) =
∑N

i=1(v, ei) ei where {ei} is an orthonormal family
in an inner product space V .

2.10. Theorem. If {e1, . . . , en} is an orthonormal family in an inner product space,
and PM (v) =

∑n
i=1(v, ei) ei the projection of v onto M = K-span{e1, ..., en} along M⊥,

then the image PM (v) is the point in M closest to v,

∥PM (v) − v∥ = min{ ∥u− v∥ : u ∈M}

for any v ∈ V . In particular the minimum is achieved at the unique point PM (v) ∈M .

Proof: Write v = v∥ + v⊥ where v∥ = PM (v) =
∑N

i=1(v, ei) ei and v⊥ = v−
∑

i(v, ei) ei.
Obviously v∥ ⊥ v⊥ and if z is any point in M we have (v∥ − z) ∈M and (v − v∥) ⊥M ,
so by Pythagoras

∥v − z∥2 = ∥(v − v∥) + (v∥ − z)∥2

= ∥v − v∥∥2 + ∥v∥ − z∥2

Thus
∥v − z∥2 ≥ ∥v − v∥∥2

for all z ∈M , so ∥v− z∥2 is minimized at z = v∥ =
∑N

i=1(v, ei) ei. Figure 6.6 shows why
the formula ∥v∥2 = ∥v∥∥2 + ∥v⊥∥2 really is equivalent to Pythagora’s formula for right
triangle (see the shaded triangle). !

Figure 6.6. If M is a finite dimensional subspace of inner product space V and v ∈ V ,
the unique point in M closest to v is m0 = v∥ =

P

i(v, ei) ei, and the minimized distance
is ∥v − m)∥. The shaded plane is spanned by the orthogonal vectors v∥ and v⊥ and we

have ∥v∥2 = ∥v∥∥
2 + ∥v⊥∥2 (Pythagoras’ formula).

V.3. Adjoints and Orthonormal Decompositions.
Let V be a finite dimensional inner product space over K = R or C. Recall that a
linear operator T : V → V is diagonalizable if there is a basis {e1, . . . , en} of eigenvectors
(so T (ei) = µiei for some µi ∈ K). We have seen that this happens if and only if
V =

⊕

λ∈sp(T ) Eλ(T ) where

sp(T ) = (the distinct eigenvalues of T in K) = {λ ∈ K : Eλ(T ) ̸= (0)}
Eλ(T ) = {v ∈ V : (T − λI)v = 0} = ker(T − λI)

We say T is orthogonally diagonalizable if there is an orthonormal basis {e1, . . . , en}
of eigenvectors, so T (ei) = µiei for some µi ∈ K.

3.1. Lemma. A linear operator T : V → V on a finite dimensional inner product space
is orthogonally diagonalizable if and only if the eigenspaces span V and are pairwise
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orthogonal, so Eλ(T ) ⊥ Eµ(T ) for λ ̸= ν in sp(T ).

Proof (⇐): is easy. We have seen that the span W =
∑

λ∈sp(T ) Eλ(T ) is a direct sum
whether or not W = V . If W = V and the Eλ are orthogonal then we have an orthogonal
direct sum decomposition V = ˙⊕

λEλ(T ). Taking an orthonormal basis in each Eλ we
get a diagonalizing orthonormal basis for all of V .

Proof (⇒): If X = {e1, . . . , en} is a diagonalizing orthonormal basis with T (ei) = µiei,
each µi is an eigenvalue. Define

sp′ = {λ ∈ sp(T ) : λ = µi for some i } ⊆ sp(T )

and for λ ∈ sp(T ) let

Mλ =
∑

{Kei : µi = λ} ⊆ Eλ(T )

(which will = (0) if λ does not appear among the scalars µi). Obviously |Mλ| ≤ |Eλ|;
furthermore, each ei lies in some eigenspace Eλ, so

V = K-span{e1, . . . , en} ⊆
∑

λ∈sp(T )

Eλ ⊆ V

and these subspaces coincide. Thus

|V | =
∑

λ∈sp(T )

|Eλ| ≥
∑

λ∈sp′

|Eλ| ≥
∑

λ∈sp′

|Mλ| ≥ |V |

and all sums are equal. (The last inequality holds because
∑

λ∈sp′ Mλ ⊇
∑n

j=1 Kej = V .)

Now if sp(T ) ̸= sp′ the first inequality would be strict, and if Mλ
⊂
̸= Eλ the second

the second would be strict, both impossible. We conclude that |Mλ| = |Eλ(T )| so
Mλ = Eλ(T ). But the Mλ are mutually orthogonal by definition, so the eigenspaces Eλ

are pairwise orthogonal as desired. !

Simple examples (discussed later) show that a linear operator on an inner product space
can be diagonalizable in the ordinary sense but fail to be orthogonally diagonalizable. To
explore this distinction further we need additional background, particularly the definition
of adjoints of linear operators.

Dual Spaces of Inner Product Spaces. There is a natural identification of
any finite dimensional inner product space V with its dual space V ∗. It is implemented
by a map J : V → V ∗ where J(v) = the functional ℓv ∈ V ∗ such that

⟨ℓv, x⟩ = (x, v) for all x ∈ V .

Each map ℓv is a linear functional because the inner product (∗, ∗) is K-linear in its left
hand entry (but conjugate linear in the right hand entry unless K = R). The map J is
one-to-one because

J(v1) = J(v2) ⇒ 0 = ⟨ℓv1
, x⟩ − ⟨ℓv2

, x⟩ = (x, v1)− (x, v2) = (x, v1 − v2)

for all x ∈ V . Taking x = v1 − v2, we get 0 = ∥v1 − v2∥2 which implies v1 − v2 = 0
and v1 = v2 by positive definiteness of the inner product. To see J is also surjective we
invoke:

3.2. Lemma. If V is finite dimensional inner product space, {e1, . . . , en} an orthonor-
mal basis, and ℓ ∈ V ∗, then

ℓ = J(v0) where v0 =
n

∑

i=1

⟨ℓ, ei⟩ ei
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(proving J surjective).

Proof: For any x ∈ V we have x =
∑

i(x, ei) ei. Hence by conjugate-linearity of (∗, ∗)

⟨J(v0), x⟩ = (x, v0) = (
∑

i

xiei ,
∑

j

⟨ℓ, ej⟩ ej) =
∑

i,j

xi⟨ℓ, ej⟩·(ei, ej)

=
∑

i

xi⟨ℓ, ei⟩ = ⟨ℓ, ∑
i

xiei⟩ = ℓ(x) for all x ∈ V.

Therefore J(v0) = ℓ as elements of V ∗. !

3.3. Exercise. Prove that J : V → V ∗ is a conjugate linear bijection: it is additive,
with J(v + v′) = J(v) + J(v′) for all v, v′ ∈ V , but J(λv) = λJ(v) for v ∈ V , λ ∈ C.

The Adjoint Operator T∗. If T : V → W is a linear operator between finite
dimensional vector spaces we showed that there is a natural transpose T t : W ∗ → V ∗.
Since V ∼= V ∗ for inner product spaces, it follows that there is a natural adjoint operator
T ∗ : V →W between the original vector spaces, rather than their duals.

3.4. Theorem (Adjoint Operator). Let V, W be finite dimensional inner product
spaces and T : V → W a K-linear operator. Then there is a unique K-linear adjoint
operator T ∗ : W → V such that

(49) (T (v), w)
W

= (v, T ∗(w))
V

for all v ∈ V, w ∈ W ,

or equivalently (T ∗(w), v)
V

= (w, T (v))
W

owing to Hermitian symmetry of the inner
product.

Proof: We define T ∗(w) for w ∈ W using our observations about dual spaces. Given
w ∈W , we get a well defined linear functional φw on V if define

⟨φw, v⟩ = (T (v), w)
W

(w is fixed; the variable is v).
Obviously φw ∈ V ∗ because (∗, ∗)

W
is linear in its left-hand entry. By the previous

discussion there is a unique vector in V , which we label T ∗(w), such that J(T ∗(w)) = φw

in V ∗, hence
(T (x), w)

W
= ⟨φw , x⟩ = ⟨J(T ∗(w)), x⟩ = (x, T ∗(w))

V

We obtain a well defined map T ∗ : W → V .
Once we know a map T ∗ satisfying (49) exists, it is easy to use these scalar identities

to verify that T ∗ is a linear operator, and verify its important properties. For linearity
we first observe that two vectors v1, v2 are equal in V if and only if (v1, x) = (v2, x), for
all x ∈ V because the inner product is positive definite.

Then T ∗(w1 + w2) = T ∗(w1) + T ∗(w2) in V follows: for all v ∈ V we have

(T ∗(w1 + w2), v)
V

= (w1 + w2, T (v))
W

= (w1, T (v))
W

+ (w2, T (v))
W

= (T ∗(w1), v)
V

+ (T ∗(w2, v)
V

(definition of T ∗(wk))

= (T ∗(w1) + T ∗(w2), v)
V

(linearity of (∗|∗) in first entry)

Similarly, T ∗(λw) = λT ∗(w), for all λ ∈ K, w ∈ W (check that λ comes forward instead
of λ). !

Note: A general philosophy regarding calculations with adjoints: Don’t look at T ∗(v);
look at (T ∗(v), w) instead, for all v ∈ V, w ∈ W .

3.5. Lemma. On an inner product space (T ∗)∗ = T as linear maps from V → W .
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Proof: It suffices to check the scalar identities (T ∗∗(v), w)
W

= (T (v), w)
W

, for all v ∈ V ,
w ∈W . But by definition,

(T ∗∗(v), w)
W

= (v, T ∗(w))
V

= (T (v), w)
W

Done. !

The adjoint T ∗ : W → V of a linear operator T : V → W between inner product
space is analogous to the transpose T t : W ∗ → V ∗. In fact, if V, W are inner product
spaces and we identify V = V ∗, W = W ∗ via the maps JV : V → V ∗, JW : W → W ∗

then T ∗ becomes the transpose T t : W ∗ → V ∗ in the sense that the following diagram
commutes:

W
T∗

−→ V
JW ↓ ↓ JV

W ∗ T t

−→ V ∗

That is ,
T t ◦ JW = JV ◦ T ∗ ( or T ∗ = J−1

V ◦ T t ◦ JW )

3.6. Exercise. Prove this last identity from the definitions.

Furthermore, as remarked earlier, when V is just a vector space, there is a natural
identification of V ∼= V ∗∗

j : V → V ∗∗ ⟨j(v), ℓ⟩ = ℓ(v) for all ℓ ∈ V ∗, v ∈ V

We remarked that under this identification of V ∗∗ ∼= V we have T tt = T for any linear
operator T : V →W , in the sense that the following diagram commutes

V ∗∗ T tt

−→ W ∗∗

jV ↑ ↑ jW

V
T−→ W

If V, W are inner product spaces, we may actually identify V ≃ V ∗ (something that
cannot be done in any natural way in the absence of the extra structure an inner product
provides). Then we may identify V ∼= V ∗ ∼= V ∗∗ ∼= V ∗∗∗ ∼= ... and W ∼= W ∗ ∼= W ∗∗ ∼=
W ∗∗∗ ∼= ...; when we do, T t becomes T ∗ and T tt becomes T ∗∗ = T .

3.7. Exercise (Basic Properties of Adjoints). Use (49) to prove:

(a) I∗ = I and (λI)∗ = λI,

(b) (T1 + T2)∗ = T ∗
1 + T ∗

2 ,

(c) (λT )∗ = λ̄T ∗ (conjugate-linearity)

3.8. Exercise. Given linear operators V
S−→W

T−→ Z between finite dimensional inner
product spaces, prove that

(T ◦ S)∗ = S∗ ◦ T ∗ : Z → V .

Note the reversal of order when we take adjoints.

3.9. Exercise. If A ∈ M(n, C) and (A∗)ij = Aji is the usual adjoint matrix, consider
the operator LA : Cn → Cn such that LA(z) = A·z. If Cn is given the standard inner
product prove that
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(a) If X = {e1, . . . , en} is the standard orthonormal basis then [LA]XX = A.

(b) (LA)
∗

= LA∗ as operators on Cn.

3.10. Example (Self-Adjointness of Orthogonal Projections). On an unadorned
vector space V the “idempotent” relation P 2 = P identifies the linear operators that
are projections associated with an ordinary direct sum decomposition V = M ⊕N . The
same is true of an inner product space, but if we only know P = P 2 the subspaces M, N
are not necessarily orthogonal. We now show that an idempotent operator P on an inner
product space corresponds to an orthogonal direct sum decomposition V = M⊕̇N if and
only if it is self-adjoint (P ∗ = P ), so that

(50) P 2 = P = P ∗

Discussion: If M ⊥ N it is fairly easy to verify (Exercise 3.11) that the associated
projection PM of V onto M = range(PM ) along N = ker(PM ) is self-adjoint. If v, w ∈ V ,
let us indicate the components by writing v = vM + vN , w = wM + wN . With (49) in
mind, self-adjointness of PM emerges from the following calculation.

(v, P ∗
M (w)) = (PM (v), w) = (vM , wM + wN ) (definition of PM (v) = vM )

= (vM , wM ) (since wN ⊥ wM )

= (vM + vN , wM ) = (v, wM ) = (v, PM (w))

Since the is true for all v ∈ V we get P ∗
M (w) = PM (w) for all w, whence P ∗

M = PM as
operators.

For the converse we must prove: If the projection PM associated with an ordinary
direct sum decomposition V = M ⊕ N is self-adjoint, so that P ∗

M = PM , then the
subspaces must be orthogonal. We leave this proof as an exercise. !

3.11. Exercise. If P : V → V is a linear operator on a vector space such that P 2 = P
it is the projection operator associated with the decomposition

V = R⊕K where R = range(P ), K = ker(P )

If V is an inner product space prove that the subspaces must be orthogonal (R ⊥ K) if
the projection is self-adjoint, so P 2 = P = P ∗. !

Matrix realizations of adjoints are easily computed, provided we restrict attention to
orthonormal bases in both V and W . With respect to arbitrary bases the computation
of [T ∗]XY can be quite a mess.

3.12. Proposition. Let T : V → W be a linear operator between finite dimensional
inner product spaces and let X = {ei}, Y = {fj} be orthonormal bases in V , W . Then

(51) [T ∗]XY = ( [T ]YX)
∗

(taking matrix adjoint on the right)

where A∗ is the usual m × n “adjoint matrix,” the conjugate-transpose of A such that
(A∗)ij = Aji for A ∈M(n×m, K).

Proof: By definition, the entries of [T ]YX are determined by the vector identities

T (ei) =
n

∑

k=1

Tki fk which imply (T (ei), fj)
W

=
n

∑

k=1

Tki (fk, fj)W
= Tji,

for all i, j. Hence

T ∗(fi) =
n

∑

k=1

[T ∗]kiek ⇒ (T ∗(fi), ej) = [T ∗]ji ,
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from which we see that

[T ∗]ij = (T ∗(fj), ei)
V

= (fj , T (ei))W
= (T (ei), fj)W

= [T ]ji = ( [T ]∗)
ij

where (A∗)ij = Aji for any matrix. !

3.13. Exercise. Let VN be the restrictions to [0, 1] of polynomials f ∈ C[x] having
degree ≤ N . Give this (N + 1)-dimensional space of C[0, 1] the usual L2 inner product

(f, h)2 =
∫ 1
0 f(t)h(t) dt inherited from the larger space of continuous functions. Let

D : VN → VN be the differentiation operator

D(a0 + a1t + a2t
2 + . . . + aN tN ) = a1 + 2a2 t + 3a3 t2 + . . . + Nan tN−1

(a) Is D one-to-one? Onto? What are range(D) and ker(D)?

(b) Determine the matrix [D]XX with respect to the vector basis X = {1-, x, x2, . . . , xN}.

(c) Determine the eigenvalues of D : VN → VN and their multiplicities.

(d) Compute the L2-inner product (f, h)2 in terms of the coefficients ak, bk that deter-
mine f and h.

(e) Is D a self-adjoint operator? Skew-adjoint?

3.14. Exercise. If D∗ is the adjoint of the differentiation operator D : VN → VN , entries
D∗

ij in its matrix [D∗]X with respect to the basis X = {1-, x, x2, . . . , xN} are determined

by the vector identities D∗(xi) =
∑N

k=0 D∗
ki xk. By definition of the adjoint D∗ we have

(xi , D(xj))2 = (D∗(xi) , xj)2 =
N

∑

k=0

D∗
ik (xk , xj)2 for 0 ≤ i, j ≤ N

and since X is a basis these identities implicitly determine the D∗
ij . Compute explicit

matrices B and C such that [D∗]X = C·B−1. As in the preceding problem, D(xk) = k·xk−1

and inner products in VN are integrals

(f , h)2 =

∫ 1

0
f(x)·h(x) dx

for polynomials f, h ∈ VN .
Hint: Beware: The powers xi are NOT an orthonormal basis, so you will have to use
some algebraic brute force instead of (51). This could get complicated. For something
more modest, just compute the action of D∗ on the three-dimensional space V = C-
span{1-, t, t2}.

3.15. Exercise. Let V = C∞
c (R) be the space of real-valued functions f(t) on the real

line that have continuous derivatives Dkf of all orders, and have “bounded support” –
each f is zero off of some bounded interval (which is allowed to vary with f). Because
all such functions are “zero near ∞” there is a well defined inner product

(f, h)2 =

∫ ∞

−∞
f(t)h(t) dt

The derivative Df = df/dt is a linear operator on this infinite dimensional space.

(a) Prove that the adjoint of D is skew-adjoint, with D∗ = −D.
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(b) Prove that the second derivative D2 = d2/dt2 is self-adjoint.

Hint: Integration by parts.

Normal and Self-Adjoint Operators. Various classes of operators T : V → V
can be defined on an finite dimensional inner product space.

1. Self-adjoint: T ∗ = T

2. Skew-adjoint: T ∗ = −T

3. Unitary: T ∗T = I (which implies TT ∗ = I because T : V → V is one-to-one
⇔ onto ⇔ bijective.) Thus “unitary” is equivalent to say-
ing that T ∗ = T−1, at least when V is finite dimensional.
(In the infinite-dimensional case we need both identities
TT ∗ = T ∗T = I to get T ∗ = T−1.)

4. Normal: T ∗T = TT ∗ (T commutes with T ∗)

The spectrum spK(T ) = {λ ∈ K : Eλ(T ) ̸= (0)} of T is closely related to that of T ∗.

3.16. Lemma. On any inner product space

sp(T ∗) = sp(T ) = {λ : λ ∈ sp(T )}

Proof: If (T − λI)(v) = 0 for some v ̸= 0, then 0 = det(T − λI) = det ([T ]X − λIn×n)
for any basis X in V . If X is an orthonormal basis we get [T ∗]X = [T ]∗X = [T ]tX. Then

det ([T ∗]X − λIn×n) = det ([T ]tX − λIn×n) = det ([T ]X − λIn×n)
t

= det ([T ]X − λIn×n) = 0

because
det(At) = det(A) and det(A) = det(A) .

Hence λ ∈ sp(T ∗). Since T ∗∗ = T , we get

sp(T ) = sp(T ∗∗) ⊆ sp(T ∗) ⊆ sp(T ) = sp(T ) !

3.17. Exercise. If A ∈ M(n, K) prove that its matrix adjoint (A∗)ij = Aji has deter-
minant

det(A∗) = det(A).

If T : V → V is a linear map on an inner product space, prove that det(T ∗) = det(T ).

3.18. Exercise. If T : V → V is a linear map on an inner product space, show that the
characteristic polynomial satisfies

pT∗(λ) = pT (λ) or equivalently pT (λ) = pT (λ)

for all λ ∈ K. In particular,

spK(T ∗) = spK(T ) = {λ : λ ∈ spK(T )}.

Proof: Since I∗ = I and (λI)∗ = λI we get

pT∗(λ) = det(T ∗ − λI) = det (T ∗ − (λI)∗)

= det ( (T − λI)∗) = det(T − λI) = pT (λ)
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Recall that µ ∈ spK(T )⇔ pT (µ) = 0. !

VI.4. Diagonalization in Inner Product Spaces.
If M is a T -invariant subspace of inner product space V it does not follow that T ∗(M) ⊆
M . The true relationship between invariance under T and under T ∗ is:

4.1. Exercise. If V is any inner product space and T : V → V a linear map, prove that

(a) A subspace M ⊆ V is T -invariant (so T (M) ⊆M)⇒M⊥ is T ∗-invariant.

(b) If dimK(V ) <∞ (so M⊥⊥ = M) then T (M) ⊆M ⇔ T ∗(M⊥) ⊆M⊥.

4.2. Proposition. If T : V → W is a linear map between finite dimensional inner
product spaces, let R(T ) = range(T ), K(T ) = ker(T ). Then T ∗ : W → V and

K(T ∗) = R(T )⊥ in W

R(T ∗) = K(T )⊥ in V

In particular if T is self-adjoint then ker(T ) ⊥ range(T ) and we have an orthogonal direct
sum decomposition V = K(T )⊕̇R(T ).

Proof: If w ∈W then

T ∗(w) = 0 ⇔ (v, T ∗(w))
V

= 0 for all v ∈ V

⇔ 0 = (v, T ∗(w))V = (T (v), w)W , for all v ∈ V

⇔ w ⊥ R(T ) .

Hence w ∈ K(T ∗) if and only if w ⊥ R(T ). The second part follows because T ∗∗ = T
and M⊥⊥ = M for any subspace. !

We will often invoke this result.

Orthogonal Diagonalization. Not all linear operators T : V → V are diago-
nalizable, let alone orthogonally diagonalizable, but if V is an inner product space we
can always find a basis that at least puts it into upper-triangular form, which can be
helpful. In fact, this can be achieved via an othonormal basis provided the characteristic
polynomial splits into linear factors over K (always true if K = C).

4.3. Theorem (Schur Normal Form). Let T : V → V be a linear operator on a finite
dimensional inner product space over K = R or C such that pT (x) = det(T − xI) splits
over K. Then there are scalars λ1, . . . , λn and an orthonormal basis X in V such that

[T ]XX =

⎛

⎜

⎜

⎜

⎝

λ1 ∗
λ2

. . .
0 λn

⎞

⎟

⎟

⎟

⎠

Proof: Work by induction on n = dimK(V ); the case n = 1 is trivial. For n > 1, since
pT splits there is an eigenvalue λ in K and a vector v0 ̸= 0 such that T (v0) = λv0. Then
λ is an eigenvalue for T ∗, so there is some w0 ̸= 0 such that T ∗(w0) = λw0.

Let M = Kw0; this one-dimensional space is T ∗-invariant, so M⊥ is invariant under
(T ∗)∗ = T and has dimension n − 1. Scale w0 if necessary to make ∥w0∥ = 1. By the
Induction Hypothesis there there is an orthonormal basis X0 = {e1, ..., en−1} in M⊥ such
that

[ T |M⊥]X0
=

⎛

⎜

⎜

⎜

⎝

λ1 ∗
λ2

. . .
0 λn−1

⎞

⎟

⎟

⎟

⎠
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Then letting en = w0 (norm = 1) we get an orthonormal basis for V such that [T ]XX has
the form:

[T ]XX =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1 ∗ c1

. . .
...

0 λn−1 cn−1

0 0 λn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where

T (en) = T (w0) = λnen +
n−1
∑

j=1

cj ej

(Remember: M = Kw0 need not be invariant under T .) !

4.4. Exercise. Explain why the diagonal entries in the Schur normal form must be the
roots in K of the characteristic polynomial pT (x) = det(T − xI), each counted according
to its algebraic multiplicity.

Note: Nevertheless, it might not be possible to find an orthonormal basis such that all
occurrences of a particular eigenvalue λ ∈ spK(T ) appear in a consecutive string λ, . . . , λ
on the diagonal. !

Recall that a linear operator T : V → V on an inner product space is normal if it
commutes with its adjoint, so that T ∗T = TT ∗. We will eventually show that when
K = C (or when K = R and the characteristic polynomial of T splits into linear factors:
pT (x) =

∏n
i=1(x − αi) with αi ∈ K), then T is orthogonally diagonalizable if and only

if T is normal. Note carefully what this does not say: T might be (non-orthogonally)
diagonalizable over K = C even if T is not normal. This latter issue can only be resolved
by determining the pattern of eigenspaces Eλ(T ) and demonstrating that they span all
of V .

Figure 6.7. The (non-orthogonal) basis vectors u1 = e1 and u2 = e1 + e2 in Exercise 4.5.

4.5. Exercise. Let {e1, e2} be the standard orthonormal basis vectors in V = K2, and
consider the ordinary direct sum decomposition

V = V1 ⊕ V2 = Ke1 ⊕K(e1 + e2) = K f1 ⊕K f2 where f1 = e1, f2 = e1 + e2 .

These subspaces are not orthogonal with respect to the standard Euclidean inner product

(x1e1 + x2e1 , y1e1 + y2e2) = x1y1 + x2y2

Define a K-linear map T : V → V , letting

T (e1) = 2e1 T (e1 + e2) = 1
2 (e1 + e2)
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(see Figure 6.7). Then T is diagonalized by the basis Y = {f1, f2} with f1 = e1 and
f2 = e1 + e2 (which is obviously not orthonormal), with

[T ]YY =

(

2 0

0 1
2

)

(a) Determine the action of T on the orthonormal basis vectors X = {e1, e2} and find
[T ]XX;

(b) Describe the operator T ∗ by determining its action on the standard orthonormal
basis X, and find [T ∗]XX;

(c) Explain why T is not a normal operator on V . Explain why no orthonormal basis
{f1, f2} in V can possibly diagonalize T .

Hint: The discussion is exactly the same for K = R and C, so assume K = R if that
makes you more comfortable.

Diagonalizing Self-Adjoint and Normal Operators. We now show that
a linear operator T : V → V on a finite dimensional inner product space is orthogonally
diagonalizable if and only if T is normal. First, we analyze the special case of self-adjoint
operators (T ∗ = T ), which motivates the more subtle proof needed for normal operators.

4.6. Theorem (Diagonalizing Self-Adjoint T). On a finite dimensional inner prod-
uct space any self-adjoint linear operator T : V → V is orthogonally diagonalizable.

Proof: If µ, λ ∈ spK(T ), we first observe that:

1. If T = T ∗ all eigenvalues are real, so spK(T ) ⊆ R + i0.

Proof: If v ∈ Eλ(T ), v ̸= 0, we have

λ ∥v∥2 = (Tv, v) = (v, T ∗v) = (v, T v) = (v, λv) = λ ∥v2∥2

which implies λ = λ.

2. If λ ̸= µ in sp(T ) the eigenspaces Eλ(T ) and Eµ(T ) must be orthogonal.

Proof: If v ∈ Eλ(T ), w ∈ Eµ(T ) then

λ(v, w) = (Tv, w) = (v, T ∗w) = (v, µw) = µ (v, w) = µ (v, w)

since eigenvalues are real when T ∗ = T . But µ ̸= λ, hence (v, w) = 0 and Eλ(T ) ⊥
Eµ(T ). Thus the linear span E =

∑

Eλ(T ) (which is always a direct sum) is

actually an orthogonal sum E = ˙⊕
λ∈sp(T )Eλ(T ).

3. If T ∗ = T the span of the eigenspaces is all of V , hence T is orthogonally diagonal-
izable.

Proof: If λ ∈ spK(T ), then Eλ(T ) ̸= (0) and M = Eλ(T )⊥ has dim(M) < dim(V ).
By Exercise 4.1 the orthogonal complement is T ∗-invariant, hence T -invariant be-
cause T ∗ = T . It is easy (see Exercise 4.7 below) to check that if W ⊆ V is
T -invariant and T ∗ = T on V , then the restriction T |W : W → W is self-adjoint
on W if one equips W with the restricted inner product from V .

4.7. Exercise. If T : V → V is linear and T ∗ = T , prove that

(T |W )∗ = (T ∗|W )

for any T -invariant subspace W ⊆ V equipped with the restricted inner product.
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To complete our discussion we show that self-adjoint operators are orthogonally diag-
onalizable, arguing by induction on n = dim(V ). This is clear if dim(V ) = 1, so assume
it true whenever dim(V ) ≤ n and consider a space of dimension n + 1. Since all eigen-
values (roots of the characteristic polynomial) are real there is a nontrivial eigenspace
M = Eλ(T ), and if this is all of V we’re done: T = λI. Otherwise, M has lower di-
mension and by Exercise 4.7 it has an orthonormal basis that diagonalizes T |M . But
V = M⊕̇M⊥ (an orthogonal direct sum), and M = Eλ obviously has an orthonormal
basis of eigenvectors. Combining these bases we get an orthonormal diagonalizing basis
for all of V . !

We now elaborate the basic properties of normal operators on an inner product space.

4.8. Proposition. A normal linear operator T : V → V on a finite dimensional inner
product space has the following properties.

1. If T : V → V is normal, ∥T (v)∥ = ∥T ∗(v)∥ for all v ∈ V .
Proof: We have

∥T (v)∥2 = (Tv, T v) = (T ∗T (v), v) = (TT ∗(v), v)

= (T ∗v, T ∗v) = ∥T ∗(v)∥2

2. For any c ∈ K, T − cI is also normal because (T − cI)∗ = T ∗− cI and cI commutes
with all operators.

3. If T (v) = λv then for the same vector v we have T ∗(v) = λv. In particular,
Eλ(T ∗) = Eλ(T ). (This is a much stronger statement than our earlier observation

that spK(T ∗) = spK(T ) = {λ : λ ∈ spK(T )} ).

Proof: (T − λ) is also normal. Therefore if v ∈ V and T (v) = λv, we have

T (v) = λv ⇒ ((T − λ)∗(T − λ) v , v) = ∥(T − λ) v∥2 = 0

which implies that

0 = ((T − λ)(T − λ)∗ v , v) = ∥(T ∗ − λI) v∥2 ⇒ T ∗(v) = λv

4. If λ ̸= µ in spK(T ), then Eλ ⊥ Eµ.

Proof: If v, w are in Eλ, Eµ then

λ(v, w) = (λv, w) = (Tv, w) = (v, T ∗w) = (v, µ w) = µ(v, w)

since T ∗(w) = µw if T (w) = µ w. Therefore (v, w) = 0 if µ ̸= λ.

If M =
∑

λ∈sp(T ) Eλ(T ) for a normal operator T , it follows that this is a direct sum

of orthogonal subspaces M = ˙⊕
λ∈sp(T )Eλ(T ), and that there is an orthonormal basis

{e1, . . . , en} ⊆M consisting of eigenvectors.

4.9. Corollary. If T : V → V is normal and K = C (or if K = R and the characteristic
polynomial pT splits over R), there is a diagonalizing orthonormal basis {ei} and V is

an orthogonal direct sum ˙⊕
λ∈sp(T )Eλ(T ).

Proof: The characteristic polynomial pT (x) = det(T − xI) splits in C[x], so there is
an eigenvalue λ0 such that T (v0) = λ0v0 for some v0 ̸= 0. The one-dimensional space
M = Cv0 is T -invariant, but is also T ∗-invariant since T ∗(v0) = λ0v0 by (3.). Then

T ∗(M) ⊆M ⇒ T ∗∗(M⊥) = T (M⊥) ⊆M⊥ .
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We also have T ∗(M⊥) ⊆M⊥ because T (M) ⊆M ⇔ T ∗(M⊥) ⊆M⊥. !

4.10. Exercise. If N is a subspace in an inner product space that is invariant under
both T and T ∗, prove that T |N satisfies

(T |N )∗ = (T ∗|N )

Note: Here we do not assume T ∗ = T , which was assumed in Exercise 4.7.

Since T |M⊥ is again a normal operator with respect to the inner product M⊥ inherits
from the larger space V , but dim(M⊥) < dim(V ), we may argue by induction to get an
orthonormal basis of eigenvectors. !

4.11. Theorem (Orthogonal Diagonalization). Let T : V → V be a linear operator
on a finite dimensional inner product space. Assume that the characteristic polynomial
pT (x) splits over K (certainly true for K = C). There is an orthonormal basis that
diagonalizes T if and only if T is normal: T ∗T = TT ∗

Note: It follows that V = ˙⊕
λ∈spK(T )Eλ(T ); in particular, the eigenspaces are mutually

orthogonal. Once the eigenspaces are determined it is easy to construct the diagonalizing
orthonormal basis for T .

Proof: (⇒) has just been done.

Proof: (⇐). If there is an orthonormal basis X = {ei} that diagonalizes T then

[T ]XX =

⎛

⎜

⎜

⎜

⎝

λ1 0
λ2

. . .
0 λn

⎞

⎟

⎟

⎟

⎠

But [T ∗]XX is the adjoint of the matrix [T ]XX,

[T ∗]XX = [T ]tXX =

⎛

⎜

⎜

⎜

⎝

λ1 0
λ2

. . .

0 λn

⎞

⎟

⎟

⎟

⎠

Obviously these diagonal matrices commute (all diagonal matrices do), so

[T ∗T ]XX = [T ∗]XX[T ]XX = [T ]XX[T ∗]XX = [TT ∗]XX

which implies T ∗T = TT ∗ as operators on V . !

4.12. Example. Let LA : C2 → C2 be the multiplication operator determined by

A =

(

1 2
0 2

)

so that LA(e1) = e1 and LA(e1 + e2) = 2 ·(e1 + e2), where X = {e1, e2} is the stan-
dard orthonormal basis. As we saw in Chapter 2, [LA]XX = A. But LA is obviously
diagonalizable with respect to the non-orthonormal basis Y = {f1, f2} where f1 = e1,
f2 = e1 + e2. The fi are basis vectors for the (one-dimensional) eigenspaces of LA, which
are uniquely determined without any reference to the inner product in V = C2; if there
were an orthonormal basis that diagonalized LA the eigenspaces would be orthogonal.
which they are not. This operator cannot be orthogonally diagonalized with respect to
the standard inner product in C2. !
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4.13. Exercise. Let T : C2 → C2 be LA for the matrix

A = A∗ =

(

1 −1
−1 2

)

in M(2.C). Determine the eigenvalues in C and the eigenspaces, and exhibit an orthonor-
mal basis Y = {f1, f2} that diagonalizes T .

4.14. Exercise. Prove that |λ| = 1 for all eigenvalues λ ∈ sp(T ) of a unitary operator
(so λ lies on the unit circle if K = C, or λ = ±1 if K = R).

4.14A. Exercise. If P is a projection on a finite dimensional vector space (so P 2 = P ),

(a) Explain why P is diagonalizable, over any field K. What are the eigenvalues and
eigenspaces?

(b) Give an explicit example of a projection operator on a finite dimensional inner
product space that is not orthogonally diagonalizable.

4.14B. Exercise. If P is a projection operator (so P 2 = P ) on a finite dimensional
inner product space, prove that P is a normal operator ⇔ K(P ) = ker(P ) and R(P ) =
range(P ) are orthogonal subspaces.
Note: (⇒) is trivial since K(P ) = Eλ=0(P ) and R(P ) = Eλ=1(P ).

4.14C. Exercise. A projection operator P (with P 2 = P ) on an inner product space is
fully determined once we know its kernel K(P ) and range R(P ), since V = R(P )⊕K(P ).
The adjoint P ∗ is also a projection operator because (P ∗P ∗) = (PP )∗ = P ∗.

(a) In an inner product space, how are K(P ) and R(P ) related to K(P ∗) and R(P ∗)?

(b) For the non-orthogonal direct sum decomposition of Exercise VI-4.5 give explicit
descriptions of the subspaces K(P ∗) and R(P ∗). (Find bases for each.)

If T : V → V is an arbitrary linear operator on an inner product space we showed in
IV.3.16 that sp(T ∗) is equal to sp(T ); in VI-3.48 we showed that

Eλ(T ∗) = Eλ(T ) (λ ∈ sp(T ))

for normal operators. Unfortunately the latter property is not true in general.

4.14D. Exercise. If T : V → V is a linear operator on an inner product space and
λ ∈ sp(T ), prove that

(a) Eλ(T ∗) = K(T ∗ − λI) is equal to R(T − λI)⊥.

(b) dim Eλ̄(T ∗) = dim Eλ(T ).

(c) T diagonalizable ⇒ T ∗ is diagonalizable.

As the next example shows, Eλ(T ∗) = K(T ∗ − λI) is not always equal to Eλ(T ) unless
T is normal.

4.14E. Exercise. If P : V → V is an idempotent operator on a finite dimensional vector
space (so P 2 = P ), explain why P must be diagonalizable over any field. If P ̸= 0 and
P ̸= I, what are its eigenvalues and its eigenspaces.

4.14F. Exercise. Let P be the projection operator on an inner product space V corre-
sponding to a non-orthogonal direct sum decomposition V = R(P )⊕K(P ). Its adjoint
P ∗ is also a projection, onto R(P ∗) along K(P ∗).

(a) What are the eigenvalues and eigenspaces for P and P ∗?
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(b) For λ = 1, is Eλ(T ∗) = K(T ∗ − λI) is equal to Eλ(T )?

Hint: See Exercise VI-4.14C and D.

Unitary Equivalence of Operators. We say that two operators T , T ′ on a
vector space V are similar, written as T ′ ∼ T , if there is an invertible linear operator S
such that T ′ = SAS−1; this means they are represented by the same matrix [T ′]YY =
[T ]XX with respect to suitably chosen bases in V . We say T ′ is unitarily equivalent
to T if there is a unitary operator U such that T ′ = UTU∗(= UTU−1). This relation,
denoted T ′ ∼= T , is an RST equivalence relation between operators on an inner product
space, but is more stringent than mere similarity. We now show T ′ ∼= T if and only if
there are orthonormal bases X, Y such that [T ′]YY = [T ]XX.

4.15. Definition. A linear isometry is a linear operator U : V → W between inner
product spaces that preserve distances in mapping points from V into W ,

(52) ∥Uv − Uv′∥W = ∥U(v − v′)∥W = ∥v − v′∥V ;

in particular ∥U(v)∥W = ∥v∥V for all v ∈ V . Isometries are one-to-one but need not be
bijections unless dim V = dim W (see exercises below).

A linear map U : V → W is unitary if U∗U = idV and UU∗ = idW , which means
U is invertible with U−1 = U∗ (hence dim V = dim W ). Obviously the inverse map
U−1 : W → V is also unitary. Unitary operators U : V →W are also isometries since

∥Ux∥2W = (Ux, Ux)W = (x, U∗Ux)V = ∥x∥2V ,

Thus unitary maps are precisely the bijective linear isometries from V to W .

If V is finite dimensional and we restrict attention to the case V = W , either of the
conditions UU∗ = idV or U∗U = idV implies U is invertible with U−1 = U∗ because

U one-to-one ⇔ U is surjective ⇔ U is bijective,

for any linear operator U : V → V when dim(V ) <∞.

4.16. Exercise. If V, W are inner product spaces of the same finite dimension, explain
why there must exist a bijective linear isometry T : V →W . Is T unique? Is the adjoint
T ∗ : W → V also an isometry?

4.17. Exercise. Let V = Cm, W = Cn with the usual inner products. Exhibit examples
of linear operators U : V →W such that

(a) UU∗ = idW but U∗U ̸= idV .

(b) U∗U = idV but UU∗ ̸= idW .

Note: This might not be possible for all choices of m, n (for instance m = n).

4.18. Exercise. If m < n and the coordinate spaces Km, Kn are equipped with the
standard inner products, consider the linear operator

T : K
m → K

n T (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , , 0)

This is an isometry from Km into Kn, with trivial kernel K(T ) = (0) and range R(T ) =
Km × (0) in Kn = Km ⊕ Kn−m.

(a) Provide an explicit description of the adjoint operator T ∗ : Kn → Km and deter-
mine K(T ∗), R(T ∗).
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(b) Compute the matrices of [T ] and [T ∗] with respect to the standard orthonormal
bases in Km, Kn.

(c) How is the action of T ∗ related to the subspaces K(T ), R(T ∗) in Km and R(T ), K(T ∗)
in Kn? Can you give a geometric description of this action?

Unitary operators can be described in several different ways, each with its own ad-
vantages in applications.

4.19. Theorem. The statements below are equivalent for a linear operator U : V →W
between finite dimensional inner product spaces.

(a) UU∗ = idW and U∗U = idV (so U∗ = U−1 and dim V = dim W ).

(b) U maps some orthonormal basis {ei} in V to an orthonormal basis {fi = U(ei)}
in W .

(c) U maps every orthonormal basis {ei} in V to an orthonormal basis {fi = U(ei)}
in W .

(d) U is a surjective isometry, so distances are preserved:

∥U(x)− U(y)∥W = ∥x− y∥V for x, y ∈ V

(Then U is invertible and U−1 is also an isometry).

(e) U is a bijective map that preserves inner products, so that

(U(x), U(y))W = (x, y)V for all x, y ∈ V.

Figure 6.8. The pattern of implications in proving Theorem 4.19.

Proof: We prove the implications shown in Figure 6.8.

Proof: (d) ⇔ (e). Clearly (e)⇒ (d). For the converse, (d) implies U preserves lengths
of vectors, with V ertUx∥W = ∥x∥V for all x. Then by the Polarization Identity for inner
products

(x, y) =
1

4

3
∑

k=0

1

ik
∥x + iky∥2 ,

so inner products are preserved, proving (d) ⇒ (e) when K = C; same argument but
with only 2 terms if K = R.

Proof: (e) ⇒ (c) ⇒ (b). These are obvious since “orthonormal basis” is defined in
terms of the inner product. For instance if (e) holds and X = {ei} is an orthonormal
basis in V then Y = {fi = U(ej)} is an orthonormal family in W because

(fi, fj)W = (U(ei), U(ej))W = (ei, U
∗Uej)V = (ei, ej)V = δij (Kronecker delta).
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But
K-span{fj = U(ej)} = U(K-span{ej}) = U(V ) = W ,

so Y spans W and therefore is a basis.

Proof (a) ⇔ (e). We have

U∗U = idV ⇔ U∗Ux = x for all x⇔ (Ux, Uy)W = (x, U∗Uy)V = (x, y)V

for all x, y ∈ V .

Proof: (b)⇒ (e). Given an orthonormal basis X = {ei} in V such that the vectors Y =
{fi = U(ei)} are an orthonormal basis in W , we may write x, y ∈ V as x =

∑

i(x, ei) ei,
etc. Then

U(x) =
∑

i

(x, ei)V
U(ei) =

∑

i

(x, ei)V
fi, etc ,

hence by orthonormality

(Ux, Uy)W = (
∑

i

(x, ei)V
fi ,

∑

j

(y, ej)V
fj)W

=
∑

i,j

(x, ei)V
(y, ej)

V
(fi, fj)W

=
∑

k

(x, ek)
V
(ek, y)

V
= (x, y)V !

Here we applied a formula worth remembering (Parseval’s identity).

4.20. Lemma (Parseval). If x =
∑

i aiei, y =
∑

bjej with respect to an orthonormal
basis in a finite dimensional inner product space then (x, y) =

∑n
k=1 akbk. Equivalently,

since ai = (x, ei) , ... etc, we have

(x, y) =
n

∑

k=1

(x, ek)(ek, y) for all x, y

in any finite dimensional inner product space, since (y, ek) = (ek, y). !

Unitary Operators vs Unitary Matrices.

4.21. Definition. A matrix A ∈ M(n, K) is unitary if AA∗ = I (which holds ⇔ AA∗ =
I ⇔ A∗ = A−1), where A∗ is the adjoint matrix such that (A∗)ij = Aji. The set of
all unitary matrices is a group since products and inverses of such matrices are again
unitary. When K = C this is the unitary group

U(n) = {A ∈M(n, C) : A∗A = I} = {A ∈M(n, C) : A∗ = A−1} .

But when K = R and A∗ = At (the transpose matrix), it goes by another name and is
called the orthogonal group,

O(n) = {A ∈ M(n, R) : AtA = I} = {A ∈ M(n, R) : At = A−1}

Both groups lie within the general linear group of nonsingular matrices GL(n, K) =
{A : det(A) ̸= 0}, and both contain noteworthy subgroups

Special Unitary Group: SU(n) = {A : A∗A = I and det(A) = +1}
Special Orthogonal Group: SO(n) = {A : AtA = I and det(A) = +1}

The group SU(3), for instance, seems to be the symmetry group that governs the relations
between electromagnetic forces and the weak and strong forces of nuclear physics. As we
will see in the next section, SO(3) is the group of rotations in Euclidean space R3, by
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any angle about any oriented line through the origin (with a similar interpretation for
SO(n) in higher dimensional spaces Rn).

Given a matrix A ∈M(n, K) it is important to know when the operator LA : Kn → Kn

is unitary with respect to the standard inner product. The answer extends the list of
condititions (a) – (e) of Theorem VI-4.19 describing when an operator is unitary, and is
quite useful in calculations.

4.22. Proposition. If A ∈M(n, K) the following conditions are equivalent.

1. LA : Kn → Kn is unitary;

2. A is a unitary matrix, so A∗A = AA∗ = I in M(n, K)

3. The rows in A form an orthonormal basis in Kn.

4. The columns in A form an orthonormal basis in Kn.

Proof: With respect to the standard basis X = {e1, . . . , en} in Kn we know that [LA]X =
A, but since X is an orthonormal basis we also have [(LA)∗]X = [LA]∗X = A∗ (the adjoint
matrix), by Exercise 3.12. Next observe that

LA∗ = (LA)
∗

as operators on Kn

(This may sound obvious, but it actually needs to be proved keeping in mind how the
various “adjoints” are defined – see Exercise 4.24 below.) Then we get

A∗A = I ⇔ idKn = [LA∗A]X = [LA∗ ]X · [LA]X = [(LA)∗]X · [LA]X

⇔ (LA)∗LA = idKn ⇔ (LA is a unitary operator) ,

proving (1.) ⇔ (2.)
By definition of row-column matrix multiplication we have

δij = (AA∗)ij =
∑

k

Aik(A∗)kj =
∑

k

AikAjk = (Rowi(A) , Rowj(A))
Kn

This says precisely that the rows are an orthonormal basis with respect to the standard
inner product in Kn. Thus (2.) ⇔ (3.), and similarly A∗A = I ⇔ the columns form an
orthonormal basis in Kn. !

A similar criterion allows us to decide when a general linear operator is unitary.

4.23. Proposition. A linear operator T : V → V on a finite dimensional inner product
space is unitary⇔ its matrix A = [T ]X with respect to any orthonormal basis is a unitary
matrix (so AA∗ = A∗A = I).

Proof: For any orthonormal basis we have

I = [idV ]X = [T ∗T ]X = [T ∗]X [T ]X = ([T ]X)
∗
[T ]X = A∗A

and similarly AA∗ = I, so A is a unitary matrix.
Conversely, if A = [T ]X is a unitary matrix we have

(Tei, T ej) = (
∑

k

Aki ek ,
∑

ℓ

Aℓj ej ) =
∑

k,ℓ

AkiAℓj δkℓ

=
∑

k

Aki(A
∗)jk = (AA∗)ji = δji = (ei, ej)

Thus T maps orthonormal basis X to a new orthonormal basis Y = {T (ei)}, and T is
unitary by Theorem 4.19(c). !
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4.24. Exercise. Prove that LA∗ = (LA)
∗

when Kn is given the standard inner product.
Hint: Show that (A∗x,y) = (x, Ay) for the standard inner product.

This remains true when A in an n×m matrix, LA : Km → Kn, and (LA)∗ : Kn → Km.

4.24A. Exercise. If A ∈M(n, C) give a careful proof that A∗A = I ⇔ AA∗ = I.

4.25. Exercise. Given two orthonormal bases {ei}, {fj} in finite dimensional inner
product spaces V , W of the same dimension, construct a unitary operator U : V → W
such that U(ei) = fi for all i.

Change of Orthonormal Basis. If T : V → V is a linear operator on a finite
dimensional inner product space, and we know its matrix [T ]XX with respect to one
orthonormal basis, what is its matrix realization with respect to a different orthonormal
basis Y?

4.26. Definition. Matrices A, B ∈ M(n, K) are unitarily equivalent, indicated by
writing A ∼= B, if there is some unitary matrix S ∈ M(n, K) such that B = SAS∗ =
SAS−1. !

4.27. Theorem (Change of Orthonormal Basis). If X = {ei} and Y = {fj} are
orthonormal bases in a finite dimensional inner product space and T : V → V is any
linear operator, the corresponding matrices A = [T ]XX and B = [T ]YY are unitarily
equivalent: there is some unitary matrix S such that

(53) [T ]YY = S [T ]XXS∗ = S [T ]XXS−1 where S = [idV ]YX = [idV ]−1
XY = [idV ]∗XY

The identity (53) remains true if the transition matrix S is multiplied by any scalar such
that |λ|2 = λλ = 1.

Proof: For arbitrary vector bases X, Y in V we have [id]XY = [id]−1
YX and

(54) [T ]YY = [id]YX · [T ]XX · [id]XY = S [T ]XXS−1

where S = [id]YX is given by the vector identities ei = id(ei) =
∑

j Sjifj . But we also
have ei =

∑

j(ei, fj) fj , so Sij = (ej , fi), for 1 ≤ i, j ≤ n.
The transition matrix S in (54) is unitary because Sij = (ej , fi) ⇒

(Rowi(S) , Rowj(S))
Kn =

∑

k

SikSjk =
∑

k

(ek, fi) (ek, fj)

=
∑

k

(fj , ek) (ek, fi) = (fj , fi) = δij

by Parseval’s identity. Then S∗ = S−1 = [id]−1
YX = [id]XY by Theorem 4.22, and

[T ]YY = S [T ]XXS∗ = S [T ]XXS−1
!

We conclude that the various matrix realizations of T with respect to orthonormal bases
in V are related by unitary equivalence (similarity modulo a unitary matrix) rather than
similarity modulo a matrix that is merely invertible. Unitary equivalence is therefore a
more stringent condition on two matrices than similarity (as defined in Chapter V).

Elements U in the unitary group U(n) act on matrix space X = M(n, C) by conjuga-
tion, sending

A )→ UAU−1 = UAU∗ .

This group action U(n)×X → X partitions X into disjoint orbits

OA = U(n) · A = {UAU∗ : U ∈ U(n)} ,
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which are the the unitary equivalence classes in matrix space. There is a similar group
action O(n)×M(n, R)→ M(m, R) of the orthogonal group on real matrices. Recall that
the similarity class of an n × n matrix A is its orbit GL(n, K) · A = {EAE−1 : E ∈
GL(n, K)} under the action of the general linear group GL(n, K) = {A : det(A) ̸= 0},
which is considerably larger than U(n) or O(n) and has larger orbits.

Diagonalization over K = C: A Summary. We recall that the spectra
spC(T ) of operators over C and their adjoints have the following properties.

1. For any T , sp(T ∗) = sp(T ) and dim Eλ(T ∗) = dim Eλ(T ). But as we will see in
4.14E below, the λ̄ eigenspace Eλ̄(T ∗) is not always equal to Eλ(T ) unless T is
normal.

2. If T = T ∗ then T is orthogonally diagonalizable, and all eigenvalues are real because
T (v) = λ⇒

λ∥v∥2 = (T (v), v) = (v, T ∗(v)) = (v, λv) = λ∥v∥2

3. If T is unitary then all eigenvalues satisfy |λ| = 1 (they lie on the unit circle in C),
because

T (v) = λ · v ⇒ ∥v∥2 = (T ∗Tv, v) = (Tv, T v) = (λv, λv) = |λ|2 · ∥v∥2

⇒ |λ|2 = 1 if v ̸= 0

4. If T is skew-adjoint, so T ∗ = −T , then all eigenvalues are pure imaginary because

λ∥v∥2 = (Tv, v) = (v, T ∗v) = (v,−T (v)) = (v,−λv) = −λ∥v∥2

Consequently, λ = −λ and λ ∈ 0 + iR in C.

5. A general normal operator is orthogonally diagonalizable, but there are no restric-
tions on the pattern of eigenvalues.

In Theorem 4.11 we proved the following necessary and sufficient condition for a linear
operator on a complex inner product space to be diagonalizable.

4.28. Theorem (Orthogonal Diagonalization). A linear operator T : V → V on
a finite dimensional complex inner product space is orthogonally diagonalizable ⇔ T is
normal (so T ∗T = TT ∗). !

VI.5. Some Operators on Real Inner Product Spaces:

Reflections, Rotations and Rigid Motions.
All this works over K = R except that in this context unitary operators are referred
to as orthogonal transformations. The corresponding matrices A = [T ]X,X with
respect to orthonormal bases satisfy AtA = I = AAt, so At = A−1 in M(n, R). An
orthogonal transformation might not have enough real eigenvalues to be diagonalizable,
which happens ⇔ the eigenspaces Eλ(T ) (λ ∈ R) fail to span V . In fact there might not
be any real eigenvalues at all. For example, if Rθ = (counterclockwise rotation about
origin by θ radians) in R2, and if θ is not an integer multiple of π, then with respect to
the standard R-basis X = {e1, e2} we have

[Rθ]XX =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

whose complex eigenvalues are eiθ and e−iθ; there are no real eigenvalues if θ ̸= nπ, even
though Rθ is a normal operator. (A rotation by θ ̸= nπ radians cannot send a vector
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v ̸= 0 to a scalar multiple of itself.)

The Group of Rigid Motions M(n). Rigid motions on Rn are the bijective
maps ρ : Rn → Rn that preserve distances between points,

∥ρ(x)− ρ(y)∥ = ∥x− y∥ for all x, y .

We do not assume ρ is linear. The rigid motions form a group M(n) under composition;
it includes two important subgroups

1. Translations: Operators T = {tb : b ∈ Rn} where

tb(x) = x + b for all x ∈ R
n (b ∈ R

n fixed)

Under the bijective map φ : Rn → T with φ(t) = tb we have φ(s + t) = φ(s) ◦ φ(t)
and φ(0) = idRn . Obviously translations are isometric mappings since

∥ tb(x)− tb(y)∥ = ∥(x + b)− (y − b)∥ = ∥x− y∥ for all b and x, y

but they are not linear operators on Rn (unless b = 0) because the zero element
does not remain fixed: tb(0) = b.

2. Linear Isometries: Operators H = {LA : A ∈ O(n)} where LA(x) = A·x and A
is any orthogonal real n× n matrix (so A is invertible with At = A−1).

Although rigid motions need not be linear operators, it is remarkable that they are
nevertheless simple combinations of a linear isometry (an orthogonal linear mapping on
Rn) and a translation operator.

(55) ρ(x) = (tb ◦ LA)(x) = A·x + b (b ∈ R
n, A ∈ O(n))

for all x ∈ Rn. In particular, any rigid motion ρ : Rn → Rn that leaves the origin fixed
is automatically linear.

5.1 Proposition. If ρ : Rn → Rn is a rigid motion that fixes the origin (so ρ(0) = 0),
then ρ is in fact a linear operator on Rn, ρ = LA for some A ∈ O(n). In general, every
rigid motion is a composite of the form (55).

Proof: The second statement is immediate from the first, for if ρ moves the origin to
b = ρ(0), the operation t−b ◦ρ is a rigid motion that fixes the origin, and ρ = tb ◦(t−b◦ρ).

To prove the first assertion, let {ej} be the standard orthonormal basis in Rn and let
e′j = ρ(ej). Since ρ(0) = 0 lengths are preserved because ∥ρ(x)∥ = ∥ρ(x)− ρ(0) = ∥x∥,
and then inner products are also preserved because

−2 (ρ(x), ρ(y)) = ∥ρ(x)− ρ(y)∥2 − ∥ρ(x)∥2 − ∥ρ(y)∥2

= ∥x− y∥2 − ∥x∥2 − ∥y∥2 = −2 (x,y)

Hence the images e′i = ρ(ei) of the standard basis vectors are also an orthonormal basis.
Now let A be the matrix whose ith column is e′i, so LA(ei) = e′i. Then A is in O(n), LA

and (LA)−1 = LA−1 are both linear orthogonal transformations on Rn, and the product
L−1

A ◦ ρ as a rigid motion that fixes each ei as well as the zero vector. But any such
motion must be the identity map. In fact if x ∈ Rn then (x, ei) = (ρx, ρei) = (ρx, e′i),
and since e′i = ei we get

xi = (x, ei) = (ρx, e′i) = (ρx, ei) = x′
i

for all i. Hence x′ = ρx = x for all x, as claimed. !
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Every rigid motion on Rn,

T (x) = A·x + tb = (tb ◦ LA) with A ∈ O(n) and b ∈ Rn

has two components, an orthogonal linear map LA and a translation tb. Rigid motions
are of two types, orientation preserving and orientation reversing. Translations
always preserve orientation of geometric figures, so the nature of a rigid motion T is
determined by its linear component LA, which preserves orientation if det(A) > 0 and
reverses it if det(A) < 0. As a simple illustration, consider the matrices (with respect to
the standard basis X in R2) of a rotation about the origin Rθ (orientation preserving),
and a reflection ry across the y-axis (orientation reversing).

[Rθ]XX =

(

cos θ − sin θ
sin θ cos θ

)

[ry ]XX =

(

−1 0
0 1

)

Rotation: Rθ, det [Rθ] = +1 Reflection: ry, det [ry] = −1

We now examine rotations and reflections in more detail, describing them in terms
of the inner product in Rn.

5.2 Example (Reflections in Inner Product Spaces). If V is an inner product
space over R, a hyperplane in V is any vector subspace M with dim(M) = n − 1 (so
M has “codimension 1” in V ). This determines a reflection of vectors across M .

Discussion: Since V = M⊕̇M⊥ (orthogonal direct sum) every vector v splits uniquely as
v = v∥+v⊥ (with “parallel component” v∥ ∈M , and v⊥ ∈M⊥). By definition, reflection
rM across M is the (linear) operator that reverses the “perpendicular component” v⊥,
so that

(56) rM (v∥ + v⊥) = v∥ − v⊥ = v − 2·v⊥

as shown in Figure 6.9.

Figure 6.9. Geometric meaning of reflection rM across an (n−1)-dimensional hyperplane
in an n-dimensional inner product space over R

Now, let {e1, ..., en−1} be an orthonormal basis in the subspace M and let en be v⊥
renormalized to make ∥en∥ = 1, so M⊥ = Ren. We have seen that

v∥ =
n−1
∑

k=1

(v, ek) ek ,

so v⊥ = v − v∥ = c · en for some c ∈ R. But in fact c = (v, en) because

c = (cen, en) = (v − v∥, en) = (v, en) + 0
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This yields an important formula involving only the inner product.

(57) rM = v∥ − v⊥ = (v∥ + v⊥)− 2·v⊥ = v − 2(v, en)·en

Note: we need ∥en∥ = 1 to make this work. !

5.3 Exercise. Show that (57) implies the following properties for any reflection.

(a) rM ◦ rM = idV , so rM is its own inverse;

(b) det(rM ) = −1, so all reflections are orientation-reversing.

(c) M is the set of fixed points Fix(rM ) = {x : rM (x) = x}. !

5.4 Exercise. Prove that every reflection rM on an inner product space preserves
distances,

∥rM (x) − rM (y)∥ = ∥x− y∥

for all x, y ∈ V .

5.5 Exercise. If M is a hyperplane in a real inner product space V and b /∈ M , the
translate b + M (a coset in V/M) is an n − 1 dimensional hyperplane parallel to M
(but is not a vector subspace). Explain why the operation that reflects vectors across
M ′ = b + M must be the rigid motion T = tb ◦ rM ◦ t−b.
Hint: Check that T 2 = T and that the set of fixed points Fix(T ) = {v ∈ V : T (v) = v}
is precisely M ′.

In another direction, we have Euler’s famous geometric characterization of orientation
preserving orthogonal transformations LA : R3 → R3 with AtA = I = AAt in M(3, R)

and det(A) > 0. In fact, det(A) = +1 since AtA = I implies ( det(A))
2

= 1, so
det(A) = ±1 for A ∈ O(n).

5.6 Theorem (Euler). Let A ∈ SO(3) = {A ∈ M(3, R) : AtA = I and det(A) = 1}. If
A ̸= I then λ = 1 is an eigenvalue such that dimR (Eλ=1) = 1. If v0 ̸= 0 in Eλ=1 and
ℓ = R v0 there is some angle θ /∈ 2πZ such that

LA = Rℓ,θ = (rotation by θ radians about the line ℓ through the origin).

(Rotations by a positive angle are determined by the usual “right hand rule,” with your
thumb pointing in the direction of v0).

Proof: The characteristic polynomial pT (x) for T = LA has real coefficients. Regarded
as a polynomial pT ∈ R[x] ⊆ C[x], its complex roots are either real or occur in conjugate
pairs z = x + iy, z = x − iy with y ̸= 0. Since degree(pT ) = 3 there must be at least
one real root λ. But because T = LA is unitary its complex eigenvalues have |λ| = 1,
because if v ̸= 0 in Eλ,

∥v∥2 = (T (v), T (v)) = (λv, λv) = |λ|2 ∥v∥2 ⇒ |λ|2 = 1 .

If λ is real the only possibilities are λ = ±1. The real roots cannot all be −1, for then
det(T ) = (−1)3 = −1 and we require det(T ) = +1. Thus λ = 1 is an eigenvalue, and we
will see below that dimR (Eλ=1) = 1.

If v0 ̸= 0 in Eλ=1, let M = Rv0. Then M⊥ is 2-dimensional and is invariant under
both T and T ∗ = T−1. Furthermore (see Exercise 5.7) the restriction T |M⊥ is a unitary
(= orthogonal) transformation on the 2-dimensional space M⊥ equipped with the inner
product it inherits from R3. If we fix an orthonormal basis {f1, f2} in M⊥ and let
f0 = v0/∥v0∥, we obtain an orthonormal basis for R3. The matrix A of T |M⊥ with
respect to X0 = {f1, f2} is in

SO(2) = {A ∈M(2, R) : AtA = I and det(A) = 1}
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because the matrix of T with respect to the orthonormal basis X = {f0, f1, f2} is

[T ]X =

[

1 0
0 A

]

,

so A ∈ SO(2) because 1 = det ([T ]X) = 1 · det(A). As noted below in Exercise VI-5.8,
if A ∈ SO(2) the rows form an orthonormal basis for R2 and so do the columns, hence
there exist a, b ∈ R such that

a2 + b2 = 1 and A =

(

a −b
b a

)

It follows easily that there is some θ ∈ R such that

A =

(

cos θ − sin θ
sin θ cos θ

)

.

This is the matrix A = [Rθ]X0
of a rotation by θ radians about the origin in M⊥, so

T : R3 → R3 is a rotation Rℓ,θ by θ radians about the axis ℓ = Rv0. !

We cannot have θ ∈ 2πZ because then T = id is not really a rotation about any well-
defined axis); that’s why we required A ̸= I in the theorem.

5.7 Exercise. Let T : V → V be a linear operator on a finite dimensional inner product
space, and M a subspace that is invariant under both T and T ∗. Prove that the restriction
(T |M) : M →M is unitary with respect to the inner product M inherits from V .
Hint: Recall Exercise 4.10.

5.8 Exercise. If A = [a, b; c, d] ∈ M(2, R) verify that AtA = I ⇔ the rows of A are an
orthonormal basis in R2, so that

a2 + b2 = 1 c2 + d2 = 1 ac + bd = 0

If, in addition we have
det(A) = ad− bc = +1

prove that c = −b, d = a and a2 + b2 = 1, and then explain why there is some θ ∈ R

such that a = cos(θ) and b = − sin(θ).
Note: Thus LA : R2 → R2 is a counterclockwise rotation about the origin by θ radians.
Hint: For the last step, think of a2+b2 = 1 in terms of a right triangle whose hypoteneuse
has length = 1.

5.9 Exercise. Consider the linear map LA : R2 → R2 for the matrix

A =

(

−1 1
1 1

)

in O(2)

What is the geometric action of LA? If a rotation, find the angle θ; if not, show that the
set of fixed points for LA is a line through the origin L, and LA = (reflection across L).

5.10 Exercise. If A =

[

a b
c d

]

is in O(2) and has det(A) = −1,

1. Prove that LA : R2 → R2 is reflection across some line ℓ through the origin.

2. Explain why

a2 + b2 = 1 c2 + d2 = 1 ac + bd = 0 det(A) = ad− bc = −1

and then show there is some θ such that A =

[

cos θ sin θ
sin θ − cos θ

]
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Note: The preceding matrix is not a rotation matrix since det(A) = −1. The angle θ
determined here is related to the angle between the line of reflection ℓ and the +x-axis.
Hints: The map LA : C2 → C2 is unitary, and in particular is orthogonally diagonal-
izable. What are the possible patterns of complex eigenvalues (counted according to
multiplicity), and how do they relate to the requirement that det(A) = −1?

VI.6. Spectral Theorem for Vector and Inner Product
Spaces.
If V is a vector space over a field K (not necessarily an inner product space), and if
T : V → V is diagonalizable over K, then V =

⊕

λ∈sp(T ) Eλ(T ) (an ordinary direct sum)

– see Proposition II-3.9. This decomposition determines projection operators Pλ = P 2
λ

of V onto Eλ(T ) along the complementary subspaces
⊕

µ̸=λ Eµ(T ). The projections
Pλ = Pλ(T ) have the following easily verified properties:

1. P 2
λ = Pλ

2. PλPµ = PµPλ = 0 if λ ̸= µ in sp(T );

3. I =
∑

λ Pλ;

Condition (1.) simply reflects the fact that Pλ is a projection operator. Each v ∈ V has
a unique decomposition v =

∑

λ vλ with vλ ∈ Eλ(T ), and (by definition) Pλ(v) = vλ.
Property (3.) follows from this. For (2.) write v =

∑

λ vλ and consider distinct α ̸= β in
sp(T ). Then

PαPβ(v) = PαPβ(
∑

λ

vλ) = Pα(vβ) = 0 (since α ̸= β)

and similarly for PβPα. The operators {Pλ : λ ∈ spK(T )} are the spectral projections
associated with the diagonalizable operator T .

Now let V be an inner product space. If T is orthogonally diagonalizable we have
additional information regarding the spectral projections Pλ(T ):

4. The eigenspaces Eλ(T ) are orthogonal, Eλ ⊥ Eµ if λ ̸= µ, and V = ˙⊕
λEλ(T ) is

an orthogonal direct sum decomposition.

5. The Pλ are orthogonal projections, hence they are self-adjoint in addition to having
the preceeding properties, so that P 2

λ = Pλ = P ∗
λ .

In this setting we can prove useful facts relating diagonalizability and eigenspaces of an
operator T : V → V and its adjoint T ∗. These follow by recalling that there is a natural
isomorphism between any finite dimensional inner product space V and its dual space
V ∗, as explained in Lemma VI-3.2. Therefore given any basis X = {e1, . . . , en} in V
there exists within V a matching basis X′ = {f1, . . . , fn} that is “dual to” X in the sense
that

(ei , fj) = δij (Kronecker delta)

These paired bases can be extremely useful in comparing properties of T with those of
its adjoint T ∗ .

6.1 Exercise. Let X = {e1, . . . , en} be an arbitrary basis (not necessarily orthonormal)
in a finite dimensional inner product space V .

(a) Use induction on n to prove that there exist vectors Y = {f1, . . . , fn} such that
(ei, fj) = δij .

(b) Explain why the fj are uniquely determined and a basis for V .
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Note: If the initial basis X is orthonormal then fi = ei and the result trivial; we are
interested in arbitrary bases in an inner product space.

6.1A Exercise. Let V be an inner product space and T a linear operator that is
diagonalizable in the ordinary sense, but not necessarily orthogonally diagonalizable.
Prove that

(a) The adjoint operator T ∗ is diagonalizable. What can you say about its eigenvalues
and eigenspaces?

(b) T is orthogonally diagonalizable so is T ∗.

Hint: If {ei} diagonalizes T what does the “dual basis” {fj} of Exercise 6.1 do for T ∗?

6.1B Exercise. If V is a finite dimensional inner product space and T : V → V is
diagonalizable in the ordinary sense, prove that the spectral projections for T ∗ are the
adjoints of those for T :

Pλ(T ∗) = (Pλ(T ))
∗

for all λ ∈ sp(T )

Hint: Use VI-6.1A and dual diagonalizing bases; we already know sp(T ∗) = sp(T ).

Note: (Pλ(T ))
∗

might differ from Pλ(T ).

We now procede to prove the spectral theorem and examine its many applications.

6.2 Theorem (The Spectral Theorem). If a linear operator T : V → V is diagonal-
izable on a finite dimensional vector space V over a field K, and if {Pλ : λ ∈ spK(T )} are
the spectral projections, then T has the following description in terms of those projections

(58) T =
∑

λ∈sp(T )

λ·Pλ

If f(x) =
∑

k=0 ckxk ∈ K[x] is any polynomial the operator f(T ) =
∑

k=0 ckT k takes the
form

(59) f(T ) =
∑

λ∈sp(T )

f(λ)·Pλ

In particular, the powers T k are diagonalizable, with T k =
∑

λ∈sp(T ) λk ·Pλ.
If we define the map Φ : K[x] → HomK(V, V ) from polynomials to linear operators

on V , letting Φ(1-) = I and

Φ(f) =
∑

k=0

ckT k for f(x) =
∑

k=0

ckxk ,

then Φ is linear and a homomorphism of associative algebras over K , so that

(60) Φ(fg) = Φ(f) ◦ Φ(g) for f, g ∈ K[x]

Finally, Φ(f) = 0 (the zero operator on V ) if and only if f(λ) = 0 for each λ ∈ spK(T ).
Thus Φ(f) = Φ(g) if and only if f and g take same values on the spectrum sp(T ), so
many polynomials f ∈ K[x] can yield the same operator f(T ).

Note: This is all remains true for orthogonally diagonalizable operators on an inner
product space, but in this case we have the additional property

(61) Φ( f ) = Φ(f)∗ (adjoint operator)
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where f(x) =
∑

k=0 ckxk and c is the complex conjugate of c. !

Proof of (6.2): If v ∈ V decomposes as v =
∑

λ vλ ∈
⊕

λ∈sp(T ) Eλ(T ), then

T (v) = T(
∑

λ

vλ) =
∑

λ

λ · vλ =
∑

λ

λ · Pλ(v)

= (
∑

λ∈sp(T )

λ · Pλ) v

for all v ∈ V , proving (58). Then T k =
∑

λ λkPλ becomes

T k(v) = T k(
∑

λ

vλ) =
∑

λ

T kvλ

But T (vλ) = λvλ ⇒

T 2(vλ) = T (λ·vλ) = λ2vλ, T 3(vλ) = λ3vλ, etc

so if v =
∑

λ vλ we get

T k(v) =
∑

λ

λkvλ =
∑

λ

λkPλ(v) = (
∑

λ

λkPλ) v

for all v ∈ V . Noting that the powers T k and the sum f(T ) are linear operators, (59)
follows: For any f(x) =

∑

k ckxk we have

f(T )(v) = f(T )(
∑

λ

vλ) =
∑

λ

f(T )(vλ)

=
∑

λ

(
∑

k

ckT k)(vλ) =
∑

λ

∑

k

ckT k(vλ)

=
∑

λ

∑

k

ckλkvλ =
∑

λ

(
∑

k

ckλk) vλ

=
∑

λ

f(λ) vλ =
∑

λ

f(λ)Pλ(v)

= (
∑

λ

f(λ)Pλ) v for all v ∈ V

Thus f(T ) =
∑

λ f(λ)Pλ as operators on V .
When f(x) is the constant polynomial f(x) = 1- we get

∑

λ∈sp(T )

f(λ)Pλ =
∑

λ

Pλ = I

as expected. Linearity of Φ is easily checked by applying the operators on either side
to a typical vector. As for the multiplicative property, let f =

∑

k=0 akxk and g =
∑

ℓ≥0 bℓxℓ, so fg =
∑

k,ℓ=0 akbℓ xk+ℓ. First notice that the multiplicative property holds

for monomials f = xk, g = xℓ because

Φ(xk)Φ(xℓ) = (
∑

λ∈sp(T )

λkPλ)·(
∑

µ∈sp(T )

µℓPµ)

=
∑

λ,µ

λkµℓ PλPµ =
∑

λ

λk+ℓPλ

= Φ(xk+ℓ)
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(PλPµ = 0 if λ ̸= µ, and P 2
λ = Pλ). Then use linearity of Φ to get

Φ(fg) = Φ(
∑

k,ℓ=0

akbℓ xk+ℓ) =
∑

k,ℓ=0

akbℓΦ(xk+ℓ)

=
∑

k,ℓ

akbℓΦ(xk)Φ(xℓ) = (
∑

k=0

akΦ(xk)) · (
∑

ℓ=0

bℓΦ(xℓ))

= Φ(f) ◦ Φ(g)

That completes the proof of Theorem 6.2. !

Although the operator Φ(f) =
∑

λ f(λ)Pλ was defined for polynomials in K[x], this
sum involves only the values of f on the finite subset sp(T ) ⊆ K, so it makes sense for all
functions h : sp(T )→ K whether or not they are defined off of the spectrum, or related
in any way to polynomials. Thus the spectral decomposition of T determines a linear
map

(62) Φ : E → HomK(V, V ) Φ(h) =
∑

λ∈sp(T )

h(λ)Pλ

defined on the larger algebra E ⊇ F[x] whose elements are arbitrary functions h from
spK(T )→ K. The same argument used for polynomials shows that the extended version
of Φ is again a homomorphism between associative algebras, as in (60). Incidentally,
the Lagrange Interpolation formula tells us that any h(x) in E is the restriction of some
(nonunique) polynomial f(x), so that

Φ(h) = Φ(f|
sp(T )

) = Φ(f)

All this applies to matrices as well as operators since a matrix is diagonalizable ⇔ the
left multiplication operator LA : Km → Km on coordinate space is diagonalizable.

We can now define “functions h(T ) of an operator” for a much broader class of
functions than polynomials, as in the next examples.

6.3 Example. If a diagonalizable linear operator T : V → V over C has spectral
decomposition T =

∑

λ λ·Eλ, we can define such operators h(T ) as

1. |T | =
∑

λ |λ| = h(T ) taking h(z) = |z|.

2. eT =
∑

λ eλ = h(T ) taking h(z) = ez =
∑∞

n=0 zn/n!

3.
√

T =
∑

λ λ1/2Pλ assigning any (complex) determination of h(z) =
√

z at each
point in the spectrum. Thus there are r2 possible operator square roots if T has
r distinct eigenvalues that are all nonzero. As in Exercise 6.4 below, every such
“square root” has the property h(T )2 = T .

4. The indicator function of a finite subset E ⊆ C is

1E(z) =

{

1 if z ∈ E
0 otherwise

Then by (60), 1E(T ) is a projection operator with 1E(T )2 = 1E(T ). In particular,
if E = {λ1, . . . , λs} ⊆ sp(T ) we have

1E(T ) =
∑

λ∈E

Pλ =
s

⊕

i=1

Pλi
(projection onto

s
⊕

i=1

Eλi
(T )) .

We get 1E(T ) = I if E = sp(T ), and if E = {λ0} is a single eigenvalue we recover
the individual spectral projections: 1E(T ) = Pλ0

. !
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6.4 Exercise. Let T : V → V be a diagonalizable linear operator over any ground field
K. If T is invertible (λ = 0 not in the spectrum), explain why

h(T ) =
∑

λ∈sp(T )

1

λ
·Pλ (h(x) =

1

x
for x ̸= 0)

is the usual inverse T−1 of T .
Hint: Show T ◦ h(T ) = h(T ) ◦ T = I

Similarly we have

T−k = (T−1)
k

=
∑

λ

1

λk
Pλ

for k = 0, 1, 2 . . ., with T 0 = I.

6.5 Exercise. Prove (61) when V is an inner product space over C. (There is nothing
to prove when K = R.)

6.6 Exercise. Prove that a normal operator T : V → V on a finite dimensional inner
product space over C is self adjoint if and only if its spectrum is real: spC(T ) ⊆ R + i0.
Note: We already explained (⇒); you do (⇐).

6.7 Exercise. If T is diagonalizable over R or C, prove that

eT =
∑

λ∈sp(T )

eλPλ

is the same as the linear operator given by the exponential series

eT =
∞
∑

k=0

1

k!
T k

. Note: If T has spectral decomposition T =
∑

λ λ ·Pλ then T k =
∑

λ λkPλ. To
discuss convergence of the operator-valued exponential series in Exercise VI-6.7, fix a
basis X ⊆ V . Then a sequence of operators converges, with Tn → T as n → ∞, if and
only if the corresponding matrices converge entry-by-entry, [Tn]XX → [T ]XX as n → ∞
in matrix space, as described in Chapter II, Section 5.3. The partial sums of a series
converge to a limit

Sn = I + T +
1

2!
T 2 + . . . +

1

n!
T n → S0 ,

⇔ (Sn)ij → (S0)ij in C for all 1 ≤ i, j ≤ N . !

6.8 Exercise. Let S ∈ M(2, C) be a symmetric matrix, so At = A

(a) Is LA : C2 → C2 diagonalizable in the ordinary sense?

(b) Is LA : C2 → C2 orthogonally diagonalizable when C2 is given the usual inner
product?

Prove or provide a counterexample.
Note: If we take R instead of C the answer is “yes” for both (a) and (b) because
A∗ = At when K = R. Recall that (LA)

∗
= LA∗ for the standard inner product on C2 –

see Exercise VI-3.9. Self-adjoint matrices are diagonalizable over both R and C, but we
are not assuming A = A∗ here, only A = At.

6.9 Exercise. Let T : C2 → C2 be the operator T = LA for

A =

(

2 3
3 4

)
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Explain why T is self-adjoint with respect to the standard inner product (z, w) = z1w1 +
z2w2 on C2. Then determine

(a) The spectrum spC(T ) = {λ1, λ2};

(b) The eigenspaces Eλ(T ) and find an orthonormal basis {f1, f2} in C2 that diagonal-
ize T . Then

(c) Find a unitary matrix U∗U = I such that

UAU∗ =

(

λ1 0
0 λ2

)

where sp(T ) = {λ1, λ2}.

6.10 Exercise (Uniquess of Spectral Decompositions). Suppose T : V → V is
diagonalizable on an arbitrary vector space (not necesarily an inner product space), so
T =

∑r
i=1 λiPλi

where sp(T ) = {λ1, . . . , λr} and Pλi
is the projection onto the λi-

eigenspace. Now suppose T =
∑s

j=1 µjQj is some other decomposition such that

Q2
j = Qj ̸= 0 QjQk = QkQj = 0 if j ̸= k

s
∑

j=1

Qj = I

and {µ1, . . . , µr} are distinct. Prove that

(a) r = s and if the µj are suitably relabeled we have µi = λi for 1 ≤ i ≤ r.

(b) Qi = Pλi
for 1 ≤ i ≤ r.

Hint: First show {µ1, . . . , µs} ⊆ {λ1, . . . , λr} = sp(T ); then relabel.

Here is another useful observation about spectra of diagonalizable operators.

6.11 Lemma (Spectral Mapping Theorem). If T : V → V is a diagonalizable
operator on a finite dimensional vector space, and f(x) is any function f : sp(T ) → C,
then

sp(f(T )) = f(sp(T )) = {f(λ) : λ ∈ sp(T )} .

Proof: We have shown that T =
∑

λ∈sp(T ) λPλ where the Pλ are the spectral projections
determined by the direct sum decomposition V =

⊕

λ Eλ(T ). Then f(T ) =
∑

λ f(λ)Pλ,
from which it is obvious that f(T )v = f(λ)v for v ∈ Eλ(T ); hence f(T ) is diagonalizable.
The eigenvalues are the values f(λ) for λ ∈ sp(T ), but notice that we might have f(λ) =
f(µ) for different eigenvalues of T . To get the eigenspace Eα(f(T )) we must add together
all these spaces

Eα(f(T )) =
⊕

{λ:f(λ)=α} Eλ(T ) for every α ∈ f(sp(T )) .

The identity is now clear. !

As an extreme illustration, if f(z) ≡ 1 then f(T ) = I and sp(T ) = {1}.

VI.7. Positive Operators and the Polar Decomposi-
tion.
If T : V → W but V ̸= W one cannot speak of “diagonalizing T .” (What would
“eigenvector” and “eigenvalue” mean in that context?) But we can still seek other de-
compositions of T as a product of particularly simple, easily understood operators. Even
when V = W one might profitably explore such options if T fails to be diagonalizable –
diagonalization is not the only useful decomposition of a linear operator.
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When V = W and V is an inner product space over R or C, all self-adjoint (or normal)
operators are orthogonally diagonalizable, and among them the positive operators are
particularly simple.

7.1 Definition. A linear operator T : V → V on an inner product space is positive if

(i) T ∗ = T and (ii) (Tv, v) ≥ 0 for all v ∈ V .

It is positive definite if (Tv, v) = 0 only when v = 0. We write T ≥ 0 or T > 0,
respectively, to indicate these possibilities. A matrix A ∈ M(n, C) is said to be positive
(or positive definite) if the multiplication operator LA : Cn → Cn is positive (positive
definite) with respect to the usual inner product, so that (Av, v) ≥ 0 for all v.

Note that self-adjoint projections P 2 = P ∗ = P are examples of positive operators, and
sums of positive operators are again positive (but not linear combinations unless the
coefficients are posiive).

If T is diagonalizable, sp(T ) = {λ1, . . . , λr}, and if T =
∑

i λiPλi
is the spectral

decomposition, a self-adjoint operator is positive⇔ λi ≥ 0 for all i, so sp(T ) ⊆ [0, +∞)+
i0. [ In fact if T ≥ 0 and vi ∈ Eλi

, we have (Tvi, vi) = λi∥vi∥2 ≥ 0. Conversely if all
λi ≥ 0 and v =

∑r
i=1 vi we get (Tv, v) =

∑

i,j(Tvi, vj), and since Eλi
⊥ Eλj

for i ̸= j

this reduces to
∑

i(Tvi, vi) =
∑

i λi∥vi∥2 ≥ 0.]
If T is positive definite then λi = 0 cannot occur in sp(T ) and T is invertible, with

T−1 =
∑

i

1

λi
Pλi

(also a positive definite operator) .

Positive Square Roots. If T ≥ 0 there is a positive square root (a positive
operator S ≥ 0 such that S2 = T ), namely

(63)
√

T =
∑

i

√

λi Pλi
(
√

λi = the nonnegative square root of λi ≥ 0 ) ,

which is also denoted by T 1/2. This is a square root because

S2 =
∑

i,j

√

λi

√

λj Pλi
Pλj

=
∑

i

λiPλi
= T

where Pλi
Pλj

= δij ·Pλi
. Notice that the spectral decompositions of T and

√
T involve

the same spectral projections Pλi
; obviously the eigenspaces match up too, because

Eλi
(T ) = E√

λi
(
√

T ) for all i.
Subject to the requirement that S ≥ 0, this square root is unique, as a consequence

of uniqueness of the spectral decomposition on any vector space (see Exercise VI-6.10)

7.2 Exercise. Use uniqueness of spectral decompositions to show that the positive
square root operator

√
T =

∑

i

√
λiPλi

defined above is unique – i.e. if A ≥ 0 and B ≥ 0
and A2 = B2 = T for some T ≥ 0, then A = B.

Positivity of T : V → V has an interesting connection with the exponential map on
matrices Exp : M(n, C)→ M(n, C),

Exp(A) = eA =
∞
∑

n=0

1

n!
An

We indicated in Section V.3 that commuting matrices A, B satisfy the Exponent Law
eA+B = eA ·eB, with e0 = I. In particular all matrices in the range of Exp are invertible,

with (eA)
−1

= e−A.
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7.3 Exercise. Let P be the set of positive definite matrices A in M(n, C), which are
all self-adjoint by definition of A > 0. Let H be the set of all self-adjoint matrices in
M(n, C), which is a vector subspace over R but not over C since iA is skew-adjoint if A
is self-adjoint. Prove that

(a) The exponential matrix eH is positive and invertible for self-adjoint matrices H .

(b) The exponential map Exp : H→ P is a bijection.

Hint: Explain why (eA)
∗

= eA∗

and then use the Exponent Law applied to matrices
etA, t ∈ R ( you could also invoke the spectral theorem).

It follows that every positive definite matrix A > 0 has a unique self-adjoint logarithm
Log(A) such that

Exp(Log(A)) = A for A ∈ P
Log(eH) = H for H ∈ H ,

namely the inverse of the bijection Exp : H→ P . In terms of spectral decompositions,

Log(T ) of a positive definite T is Log(T ) =
∑

i

Log(λi)Pλi
if T =

∑

i

λiPλi

Exp(H) of a self-adjoint matrix H is eH =
∑

i

eµiQλi
if H =

∑

i

µiQµi

When V = W the unitary operators U : V → V are another well-understood family of
(diagonalizable) operators on an inner product space. They are particularly interesting
and easy to understand because they correspond to the possible choices of orthonormal
bases in V . Every unitary U is obtained by specifying a pair of orthonormal bases
X = {ei} and Y = {fj} and defining U to be the unique linear map such that

U(
n

∑

i=1

ciei ) =
n

∑

j=1

cjfj (arbitrary ci ∈ C)

Polar Decompositions. The positive operators P ≥ 0 and unitary operators U
on an inner product space provide a natural polar decomposition T = U ·P of any linear
operator T : V → V . In its simplest form (when T is invertible) it asserts that any
invertible map T has a unique factorization

T = U · P

{

U : V → V unitary (a bijective isometry of V )

P : V → V positive definite, invertible = eH with H self-adjoint

Both factors are orthogonally diagonalizable (U because it is normal and P because it
is self-adjoint), but the original operator T need not itself be diagonalizable over C, let
alone orthogonally diagonalizable.

We will develop the polar decomposition first for an invertible operator T : V → V
since that proof is particularly transparent. We then address the general result (often
referred to as the singular value decomposition when it is stated for matrices). This
involves operators that are not necessarily invertible, and may be maps T : V → W
between quite different inner product spaces. The positive component P : V → V is still
unique but the unitary component U may be nonunique (in a harmless sort of way). The
“singular values” of T are the eigenvalues λi ≥ 0 of the positive component P .

7.4 Theorem (Polar Decomposition I). Let V be a finite dimensional inner product
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space over C. Every invertible operator T : V → V has a unique decomposition T = U ·P
where

U ∈ U(n) = (the group of unitary operators U∗ = U−1)

P ∈ P = (invertible positive definite operators P > 0)

By Exercise 7.3 we can also write T = U · eH for a unique self-adjoint operator A ∈ H.

This is the linear operator (or matrix) analog of the polar decomposition

z = |z|eiθ = r · eiθ with r > 0 and θ real (so |eiθ| = 1)

for nonzero complex numbers. If we think of “positive definite” = “positive,” “self-
adjoint” as “real,” and “unitary” = “absolute value 1,” the analogy with the polar
decomposition z = reiθ of a nonzero complex number z is clear.

Some Preliminary Remarks. If T : V → W is a linear map between two inner
product spaces, its absolute value |T | is the linear map from V → V determined in the
following way.

The product T ∗T maps V → V and is a positive operator because

(T ∗T )∗ = T ∗T ∗∗ = T ∗T (T ∗ : W → V and T ∗∗ = T on V )

(T ∗Tv, v) = (Tv, T v) = ∥Tv∥2 ≥ 0 for v ∈ V

Thus T ∗T is self-adjoint and has a spectral decomposition T ∗T =
∑

i λiPλi
, with eigen-

values λi ≥ 0 and self-adjoint projections Pλi
: V → Eλi

(T ∗T ) onto orthogonal sub-
spaces. The absolute value |T | : V → V is then defined as the unique positive square
root

|T | = (T ∗T )
1/2

=
∑

i

√

λi Pλi
,

whose spectral decomposition involves the same projections that appeared in T ∗T . For
any linear operator T : V →W we have T ∗T = |T |2 and hence

(64) ∥Tv∥2W = (T ∗Tv, v)V = (|T |2v, v)V = ∥ |T |(v)∥2V for all v ∈ V .

Thus |T |(v) ∈ V and Tv ∈ W have the same norm for every v ∈ V . It follows from (64)
that T , T ∗T , and |T | have the same kernel because

Tv = 0 ⇒ T ∗T (v) = 0 ⇒ (T ∗Tv, v) = (|T |2(v), v)) = ∥ |T |(v)∥2 = 0

⇒ |T |(v) = 0 ⇒ Tv = 0 (by (64)) ,

Thus the kernels coincide

(65) K(T ) = K(T ∗T ) = K(|T |)

even if the ranges differ, and one of these operators is invertible if and only if they all
are. In particular |T | is positive definite on V (|T | > 0) if and only if T : V → W is
invertible. (Comparisons between T and |T | do not follow from spectral theory because
T itself need not be diagonalizable, even if V = W .)

Proof of VI-7.4: The proof in the invertible case is simple. For any linear operator
T : V → V we have T ∗T = |T |2 and have seen in (64) that |T |(v) and Tv always have
the same norm. When T is invertible, so is |T | and we have R(T ) = R(|T |) = V . The
identities (64) determine a bijective isometry U : V → V that sends T (v) )→ |T |(v)
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for all v, as indicated in Figure 6.10. This map is also linear because U = T ◦ |T |−1

is a composite of linear operators on V . Thus when T is invertible the desired polar
decomposition is

U ◦ |T | = (T ◦ |T |−1) ◦ |T | = T

Figure 6.10. The maps involved in defining |T | : V → V for an invertible map T : V → W
between two inner product spaces. In the discussion we show that the positive operator

|T | = (T ∗T )1/2 is invertible and R(T ∗T ) = R(|T |) = R(T ) = V when T is invertible.
The induced bijection U = T ◦ |T |−1 : V → V is a bijective linear isometry (a unitary map
of V → V ) and the polar decomposition of T is U ·|T |.

As for uniqueness (valid only in the invertible case), suppose T = UP = U0P0 with
U, U0 unitary and P, P0 positive definite. Then P ∗ = P, P ∗

0 = P0, and T ∗ = P ∗U∗ =
PU∗ = P ∗

0 U∗
0 = P0U∗

0 since the positive components are self-adjoint; hence

P 2 = PU∗UP = PU∗(PU∗)
∗

= P0U
∗
0 U0P0 = P 2

0

Now P 2 = P ∗P is a positive operator which has a unique positive square root, namely
P ; likewise for P 2

0 . By uniqueness we get P0 = P , from which U0 = U folllows. !

Computing U for Invertible T : V → V . Determining the positive part
P = |T | is straightforward: P 2 = T ∗T is self-adjoint and its spectral decomposition can
be computed in the usual way. If {ei} is an orthonormal basis of eigenvectors for T ∗T ,
which are also eigenvectors for P = |T |, we have

(66) T ∗T (ei) = λiei and |T |(ei) =
√

λi ei

(with all λi > 0 because |T | is invertible ⇔ T is invertible ⇔ all λi ̸= 0). From this we
get

|T |−1(ei) = |T |−1

(

1√
λi

|T |(ei)

)

=
1√
λi

ei

⇓

U(ei) = T(|T |−1ei) =
1√
λi

T (ei)

By its construction U is unitary on V so the vectors

fi =
1√
λi

T (ei)

are a new orthonormal basis in V . This completely determines U . !

Note that

∥U(ei)∥ =
1√
λi
∥T (ei)∥ =

1√
λi
∥ |T |(ei)∥ =

√
λi√
λi
∥ei∥ = 1
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as expected.

The General Polar Decomposition. When T : V → V is not invertible the
polar decomposition is somewhat more complicated. The positive component in T = U·P
is still the unique positive square root P = |T | = (T ∗T )1/2. But the unitary part is based
on a uniquely determined isometry U0 : R(|T |)→ R(T ) between proper subspaces in V
that can have various extensions to a unitary map U : V → V . This ambiguity has
no effect on the factorization T = U ·P ; the behavior of U off of R(|T |) is completely
irrelevant.

7.5 Theorem (Polar Decomposition II). Any linear operator T : V → V on a finite
dimensional complex inner product space has a factorization T = U |T | where

1. |T | is the positive square root of T

2. U is a unitary operator on V .

The positive factor is uniquely determined only on the range R(|T |), which is all that
matters in the decomposition R = U |T |, but it can be extended in various ways to a
unitary map V → V when T is not invertible.

Proof: First note that

R(|T |) = K(|T |)⊥ = K(T )⊥ = K(T ∗T )⊥ = R(T ∗T )

R(|T |)⊥ = K(|T |) = K(T ) = K(T ∗T ) = R(T ∗T )⊥

The subspaces in the first row are just the orthocomplements of those in the second. The
first and last identities in Row 2 hold because |T | and T ∗T are self-adjoint (Proposition
VI-4.2); the rest have been proved in (65). We now observe that equation (64)

∥Tv∥2 = (T ∗Tv, v) = (|T |2v, v) = ∥ |T |(v)∥2 for all v ∈ V ,

implies that there is a norm-preserving bijection U0 from R(|T |) → R(T ), defined by
letting

(67) U0(|T |(v)) = T (v) .

This makes sense despite its seeming ambiguity: If an element y ∈ R(|T |) has realizations
y = |T |(v′) = |T |(v) we get |T |(v′ − v) = 0, and then

T (v′ − v) = T (v′)− T (v) = 0

because |T |(v′−v) and T (v′−v) have equal norms. Thus T (v′) = T (v) and the operator
(67) is in fact a well-defined bijective map from R(|T |) into R(T ). It is linear because

U0(|T |v1 + |T |v2) = U0(|T |(v1 + v2)) = T (v1 + v2)

= Tv1 + Tv2 = U0(|T |v1) + U0(|T |v2)

It is then immediate that ∥U0(y)∥ = ∥y∥ for all y ∈ R(|T |), and R(U0) ⊆ R(T ). But
K(T ) = K(|T |) so dim R(T ) = dim R(|T |); hence dim R(U0) = dim R(|T |) because U0

is an isometry. We conclude that R(U0) = R(T ) and U0 : R(|T |) → R(T ) is a bijective
isometry between subspaces of equal dimension. By definition we get

T (v) = (U0 · |T |)(v) for all v ∈ V .

We can extend U to a globally defined unitary map U : V → V because K(T ) =
K(|T |)⇒ dim R(T ) = dim R(|T |) and dim R(T )⊥ = dim R(|T |)⊥; therefore there exist
various isometries

U1 : R(|T |)⊥ → R(T )⊥ .
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corresponding to orthonormal bases in these subspaces. Using the orthogonal decompo-
sitions

V = R(|T |) ⊕̇R(|T |)⊥ = R(T ) ⊕̇R(T )⊥

we obtain a bijective map
U(v, v′) = (U0(v), U1(v

′))

such that U |T | = U0|T | = T on all of V . !

There is a similar decomposition for operators T : V → W between different in-
ner products spaces; we merely sketch the proof. Once again we define the positive
component |T | = (T ∗T )1/2 as in (63). The identity

∥ |T |(v)∥2V = ∥T (v) ∥2W for all v ∈ V

holds exactly as in (64), and this induces a linear isometry U0 from M = R(|T |) ⊆ V to
N = R(T ) ⊆W such that

T = U0 · |T | = [T · (|T |M)
−1

] · |T |

where |T |M = (restriction of |T | to M).
The fact that U0 is only defined on R(|T |) is irrelevant, as it was in Theorem 7.5,

but now U0 cannot be extended unitary map (bijective isometry) from V to W unless
dim(V ) = dim(W ). On the other hand since |T | is self-adjoint we have

R(|T |) = K(|T |)⊥ = K(T )⊥

and can define U ≡ 0 on K(T ) to get a globally defined “partial isometry” U : V → W

Figure 6.11. The maps involved in defining a polar decomposition T = U0 · |T | for
an arbitrary linear map T : V → W between different inner product spaces. Here we
abbreviate M = K(T )⊥ ⊆ V and N = R(T ) ⊆ W ; U0 : M → N is an induced isometry
such that T = U0 · |T |.

such that K(U) = K(T ), R(U) = R(U0) = R(T ), and

U |K(T ) = 0 U |K(T )⊥ = U |R(|T |) = U0

The players involved are shown in the commutative diagram Figure 6.11.

The singular value decomposition is a useful variant of Theorem 7.5.
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7.6 Theorem (Singular Value Decomposition). Let T : V →W be a linear operator
between complex inner product spaces. There exist nonnegative scalars

λ1 ≥ . . . ≥ λr ≥ 0 (r = rank(T ))

and orthonormal bases {e1, . . . , er} for K(T )⊥ ⊆ V and {f1, . . . , fr} for R(T ) ⊆W such
that

T (ei) = λifi for 1 ≤ i ≤ r and T ≡ 0 on K(T ) = K(T )⊥⊥

The λi are the eigenvalues of |T | = (T ∗T )1/2 counted according to their multiplicities.
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